Qualification Exam: Applied Math

September, 2023

- 1. Consider the Newton's method for finding a solution x_* to f(x) = 0, where $f \in$ $C^{2}(a,b), x_{*} \in (a,b).$
 - 1: determine $x_0 \in (a, b)$.
 - 2: **for** $k = 0, 1, 2, \dots$ **do** 3: $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$.

 - 4: end for
 - (1). Prove that if x_0 is sufficiently close to x_* and $f'(x_*) \neq 0$, then $\lim_{k\to\infty} x_k = x_*$ and $\lim_{k\to\infty} \frac{x_{k+1}-x_*}{(x_k-x_*)^2} = \frac{f''(x_*)}{2f'(x_*)}$.
 - (2). In practice sometimes the derivative is not easy to be obtained. As a result, a difference is used instead: $x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k)$. Prove that if x_0 is sufficiently close to x_* , then $x_k \to x_*$ and $\lim_{k\to\infty} \frac{x_{k+1} - x_*}{(x_k - x_*)(x_{k-1} - x_*)} = \frac{f''(x_*)}{2f'(x_*)}$.
- 2. Consider the explicit shifted QR method for computing eigenvalues of a matrix $A \in \mathbb{C}^{n \times n}$.
 - 1: find an upper Hessenberg matrix H_0 and a unitary matrix U_0 such that $H_0 =$ $U_0^{\mathrm{H}}AU_0.$
 - 2: for $i = 0, 1, 2, \dots$ do
 - determine a scalar μ_k . 3:
 - compute QR factorization $Q_k R_k = H_k \mu_k I$. 4:
 - $H_{k+1} = R_k Q_k + \mu_k I.$ 5:
 - 6: end for
 - (1). Prove that H_i , i = 1, 2, ... are all upper Hessenberg matrices.
 - (2). Interpret the purpose to use H_0 rather than A in the iteration.
 - (3). Suppose that A has n distinct eigenvalues and none of the shifts μ_i , i = $1, 2, \ldots$ is an eigenvalue of A. Prove that $H_i, i = 0, 1, 2, \ldots$ are unreduced upper Hessenberg matrices. (An upper Hessenberg matrix H is called unreduced, if $H_{i+1,i} \neq 0$ for i = 1, ..., n - 1.)

(4). Write
$$H_k = \begin{bmatrix} G_k & u_k \\ \varepsilon_k e^{\mathrm{T}} & \alpha_k \end{bmatrix}$$
 where $\alpha_k, \varepsilon_k \in \mathbb{C}, u_k, e \in \mathbb{C}^{n-1}$ and $e = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$. Suppose

A has n distinct eigenvalues. Prove that $|\varepsilon_{k+1}| \leq \rho_k^2 ||u_k||_2 |\varepsilon_k|^2 + \rho_k |\alpha_k - \mu_k| |\varepsilon_k|$, where $\rho_k = ||(G_k - \mu_k I)^{-1}||_2$, provided μ_k is not an eigenvalue of G_k .

3. If p is a polynomial of degree n (on [-1, 1]), it is determined by its values on an (n+1)-point grid on [-1, 1]. The derivative p', a polynomial of degree (n-1), is determined on the same grid. The (classical) differentiation matrix is the (n + 1)-by-(n + 1) matrix $D = (D_{ij}) \in \mathbb{R}^{(n+1)\times(n+1)}$ that represents the linear map from the vector of values of p to the vector of values of p', namely:

$$p'(x_i) = \sum_{j=0}^n D_{ij} p(x_j) \; .$$

- (1). Prove that $D_{ij} = l'_i(x_i)$, where $l_j(x)$ is the *j*-th Lagrange basis function.
- (2). If a Chebyshev grid $(x_j = \cos(j\pi/n), 0 \le j \le n)$ is adopted, derive explicit formulas for D_{ij} .
- 4. Consider a Runge-Kutta method for the ODE y' = f(t, y) (f is Lipschitz continuous in y and uniform in t) with the following Butcher tableau:

- (1). Rewrite the scheme in the form of $u_{n+1} = u_n + hF(t_n, u_n, h; f)$.
- (2). Assume that f is sufficiently smooth. Prove that this method is convergent and determine the order of convergence.
- (3). What is the region of absolute stability of this method? Give a description that is as explicit as possible.
- 5. For the equation $u_t + au_{xxx} = 0$ (a is a constant), applying the idea of the Lax-Friedrichs scheme, one can get the scheme

$$u_m^{n+1} = \frac{1}{2}(u_{m+1}^n + u_{m-1}^n) - \frac{1}{2}akh^{-3}(u_{m+2}^n - 2u_{m+1}^n + 2u_{m-1}^n - u_{m-2}^n),$$

where k and h represent the time step and mesh size, respectively.

- (1). Give the leading order term of local trancation error.
- (2). Analyze the stability of this scheme.

6. Consider the following linear programming problem

$$\max_{\mathbf{x}} \langle \mathbf{c}, \mathbf{x} \rangle \quad \text{s.t.} \quad A\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0,$$

where $\mathbf{x} \in \mathbb{R}^n, 0 \leq \mathbf{b} \in \mathbb{R}^m, A \in \mathbb{R}^{m \times n}$ and $\mathbf{c} \in \mathbb{R}^n, A$ is a full rank matrix and m < n.

- (1) Prove that the basic feasible solutions are equivalent to the vertices of its feasible region.
- (2) Write down the dual problem , and prove that when the optimal solution exists, the dual problem must also have an optimal solution, and the optimal objective values of these two problems are equal.
- 7. Consider the eigenvalue problem with $0 < \epsilon \ll 1$

$$u'' + (\lambda + \epsilon f(x))u = 0, \quad 0 < x < 1$$

$$u(0) = 0, \quad u'(1) = 0.$$

where f is a given smooth function. Give the asymptotic expansion of λ such that the accuracy is $O(\epsilon)$.