QUALIFY EXAM FOR APPLIED MATHEMATICS

- (1) (15 points) Suppose $k \leq n \leq m$, and $A \in \mathbb{C}^{m \times n}$.
	- find a rank-k matrix X satsifying $||A X||_2 \le ||A B||_2$ for any rank-k matrix B. Here $\|\cdot\|_2$ is the spectral norm.
	- find a rank-k matrix X satsifying $||A-X||_F \le ||A-B||_F$ for any rank-k matrix B. Here $\lVert \cdot \rVert_F$ is the Frobenius norm.
- (2) (20 points) Consider the Gauss-Seidel iteration for solving the linear equation $Ax = b$ for $A = [a_{ij}] \in \mathbb{R}^{n \times n}, b = [b_i] \in \mathbb{R}^n$ with $a_{ii} \neq 0$ for $i = 1, \dots, n$.
	- 1: determine $x^{(0)} \in \mathbb{R}^n$.
	- 2: for $k = 0, 1, 2, ...$ do
	- 3: $x_i^{(k+1)} = \frac{1}{a_{ii}} (b_i \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} \sum_{j=i+1}^{n} a_{ij} x_j^{(k)})$ for $i = 1, 2, ..., n$. 4: end for
	-
	- Write $x^{(k)} = [x_i^{(k)}]$ and $A = D L U$ where $D, -L, -U$ are the diagonal, strictly lower triangular, strictly upper triangular parts of A respectively. Show that $x^{(k+1)} = (D - L)^{-1} U x^{(k)} + (D - L)^{-1} b$.
	- Prove that if A is diagonally dominant, then A is invertible, and the Gauss-Seidel iteration converges, namely $\lim_{k\to\infty} x^{(k)} = A^{-1}b$ for any $x^{(0)}$. (A matrix A is called diagonally dominant, if $|a_{ii}| > \sum_{j\neq i} |a_{ij}|$ for $i = 1, ..., n$.)
	- Prove that if A is symmetric and positive definite, then A is invertible, and the Gauss-Seidel iteration converges.
- (3) (20 points) Given the Hilbert matrix $H_n = \left[\frac{1}{i+j-1}\right]_{i,j=1,\ldots,n}$. Prove:
	- H_n is positive definite.
	- the spectral radius $\rho(H_n)$ of H_n is strictly monotonically increasing with respect to n.
	- $\rho(H_n) \to \pi$ as $n \to \infty$.
- (4) (10 points) Apply the following three-step method with a parameter $\theta \geq 0$ for solving the heat equation $u_t - a^2 u_{xx} = 0$ (Cauchy or periodic problem):

$$
(1+\theta)\frac{u_j^{n+1}-u_j^n}{k} - \theta\frac{u_j^n - u_j^{n-1}}{k} = a^2 \frac{u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}}{h^2}.
$$

Give its truncation error and stability. Particularly, give the value of θ such that the truncation error attains its highest order.

(5) (15 points) Denote the grid $I_h = \{x_j\}_{j=0}^M$, $x_0 < x_1 < \ldots < x_M$. Set $u = \{u_j\}_{j=0}^M$ as a grid function on I_h . Suppose

$$
Lu_j = -(a_ju_{j-1} - b_ju_j + c_ju_{j+1}) + q_ju_j, \quad j = 1, ..., M-1,
$$

where $a_j, b_j, c_j > 0, q_j \geq 0$ and $a_j + c_j \leq b_j$.

- Assume $Lu_j \leq 0$ for all $1 \leq j \leq M-1$. Show that u_j can't attain positive maximum at inner points $(1 \leq j \leq M - 1)$ unless $u_j \equiv C$;
- Suppose $d_j = b_j a_j c_j + q_j > 0 (j = 1, ..., M 1)$. Show the solution of the difference equation

$$
Lu_j = \varphi_j
$$
, $j = 1, ..., M - 1$; $u_0 = u_M = 0$,

satisfies $||u||_{\infty} = \max_{j} |u_j| \leq \max_{j}$ $|\varphi_j|$ $\frac{\varphi_j}{d_j}$.

(6) (10 points) Let $S \subset \mathbb{R}^n$ be a non-empty closed convex set, $f \in C^2(S)$ is convex. For any $x^0 \in S$, define $L(f(x^0)) = \{x \in S | f(x) \le f(x^0) \}$, if there exists some $m > 0$ such that $\overline{2}$

$$
d^{\top} \nabla^2 f(x) d \ge m \|d\|^2, \quad \forall x \in L(f(x^0)), d \in \mathbb{R}^n.
$$

Prove that $L(f(x^{0}))$ is a bounded and closed convex set.

(7) (10 points) Given a linear programming (LP) :

$$
\max 3x_1 + 2x_2 + 15x_3
$$

s.t. $x_1 + x_2 + x_3 \le 12$
 $2x_1 + x_2 + 5x_3 \le 18$,
 $x_1, x_2, x_3 \ge 0$.

- Write down the standard LP form.
- Compute the optimal solution and optimal value of the problem.