清华大学考试试题专用纸

姓名: ______ 学号: _____

Everyone need to solve Problem 1, 2, 3, 4 (10 points each). Please select four problems in the following table and solve them (15 points each).

Problem 5	Problem 6	Problem 7	Problem 8	Problem 9	Problem 10

Notations: S^n means the sphere of dimension n. \mathbb{RP}^n means the real projective space of dimension n. \mathbb{CP}^n means the complex projective space of **complex** dimension n.

- 1. Solve the following problems.
 - (A) What's the fundamental group of SO(3)?
 - (B) Does SO(3) admit a smooth Riemannian metric with constant Ricci curvature?
- 2. Solve the following problems.
 - (A) Is it true that every continuous map $f: \mathbf{S}^{2024} \to \mathbf{RP}^{2024}$ is null-homotopic?
 - (B) Is it true that every continuous map $g: \mathbf{S}^{2024} \to \mathbf{CP}^{1012}$ is null-homotopic?
- 3. Let (M, g) be a connected Riemannian manifold of dimension n. Suppose that there exists some $f \in C^{\infty}(M, \mathbf{R})$ such that

$$\operatorname{Ric}(g) = (n-1)fg.$$

- (A) If n = 2, is f necessarily a constant?
- (B) If n = 2024, is f necessarily a constant?
- 4. Consider the quotient space $X = ([0,1] \times \mathbf{S}^1 \times \mathbf{S}^1) / \sim$, where the equivalence relation \sim is generated by

$$(0, x, y) \sim (0, z, w)$$
 if $xy = zw$,

and

$$(1, x, y) \sim (1, z, w)$$
 if $x^2 y^6 = z^2 w^6$.

Here we treat \mathbf{S}^1 as the space of unit complex numbers. Compute $H_n(X; \mathbf{Z})$ for all n.

第1页,共2页

5. Recall a space X is called an **H-space** if there exists a point $e \in X$ and a continuous map $\mu: X \times X \to X$ such that the map

$$X \to X$$
 defined by $x \mapsto \mu(e, x)$

and the map

$$X \to X$$
 defined by $x \mapsto \mu(x, e)$

are both homotopic to the identity map. Show that \mathbb{CP}^n is **not** an *H*-space for any $1 \le n < \infty$.

6. Let (M, g) be a Cartan-Hadamard manifold. Given $p \in M$, let

$$f: M \to [0, +\infty)$$

be the function $f(x) = \frac{1}{2}d(x,p)^2$. Show that f is strictly geodesically convex, i.e. for any (nontrivial) geodesic $\gamma : [0,1] \to M$, the following inequality holds for all $t \in (0,1)$

$$f(\gamma(t)) < (1-t)f(\gamma(0)) + tf(\gamma(1)).$$

- 7. Let M be an oriented, connected, closed manifold of dimension $n \ge 2$. Let $f : \mathbf{S}^n \to M$ be a continuous map of mapping degree $\deg(f) = 1$. Show that f must be a homotopy equivalence.
- 8. Let (M, g) be a smooth Riemannian manifold of dimension n and $p \in M$. Show that when r is small enough,

$$Vol(B(p,r)) = \omega_n r^n \left(1 - \frac{s(p)}{6(n+2)} r^2 + O(r^3) \right)$$

where ω_n is the volume of the unit ball in \mathbf{R}^n and s(p) is the scalar curvature of (M, g) at point p.

- 9. Let M be a smooth, closed manifold of dimension ≥ 1 . And let $f : M \to M$ be a smooth map such that $f \circ f(x) = x$ for any $x \in M$. Show that the set $\{x \in M \mid f(x) = x\}$ can **not** be a single point.
- 10. Solve the following problems.
 - (A) Does $\mathbf{S}^1 \times \mathbf{S}^1$ admit a Riemannian metric with conjugate radius = $+\infty$?
 - (B) Does $\mathbf{S}^1 \times \mathbf{S}^1$ admit a Riemannian metric with conjugate radius $< +\infty$?
 - (C) Does $\mathbf{S}^2 \times \mathbf{S}^1$ admit a Riemannian metric with conjugate radius = $+\infty$?

第2页,共2页