Name:_____

Student ID: _____

Qualifying Exam-Analysis

Spring 2025

1. (10 pts) Compute the Fourier transform $\hat{u}(\xi)$ of $u(x) = \frac{x}{1+x^2}$. (Here we use the following definition for Fourier transform of L^1 functions

$$\hat{u}(\xi) = \int_{\mathbb{R}} e^{-ix \cdot \xi} u(x) dx$$

and extend to tempered distributions.)

2. (10 pts) Compute the Fourier series

$$\sum_{n\in\mathbb{Z}}a_ne^{inx}$$

of the characteristic function f of [-1, 1], that is,

$$f(x) = \begin{cases} 1 & \text{if } |x| \le 1 \\ 0 & \text{if } 1 < |x| \le \pi \end{cases},$$

and find all points $x \in [-\pi, \pi]$ for which this series converges absolutely.

3. (10 pts) For all $u_0 \in C_c^{\infty}(\mathbb{R})$, we define $u(t,x) \in C^{\infty}(\mathbb{R}^2)$ as follows

$$u(t,x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{i(t\xi^3 + x\xi)} \widehat{u}_0(\xi) \,\mathrm{d}\xi.$$

Show that for all $x_0 \in \mathbb{R}$, the function $t \mapsto \partial_x u(t, x_0)$ belongs to $L^2(\mathbb{R})$ and there exists a constant $c_0 > 0$ independent of x_0 and u, such that

$$\int_{\mathbb{R}} |\partial_x u(t, x_0)|^2 \, \mathrm{d}t = c_0 \int |u_0(x)|^2 \, \mathrm{d}x.$$

4. (10 pts) Let $f : \Omega \to \mathbb{C}$ be non-constant and holomorphic, where $\Omega \subset \mathbb{C}$ is an open set containing the closed unit disk $|z| \leq 1$. Assume that |f(w)| = 1 whenever |w| = 1, show that $f(\Omega)$ contains the open unit disk. (Hint: reduce to the statement that f(z) = 0 has at least one root in the disk.) 5. (15 pts) Consider the following second order linear equation for u = u(x):

$$x\frac{d^2u}{dx^2} + 2\frac{du}{dx} + u = 0.$$

- (i) Prove that all nontrivial real-valued solutions have infinite number of zeroes on (1,∞).
- (ii) Is it true that all nontrivial real-valued solutions must have finite number of zeroes on (0, 1)? Prove your answer.
- 6. (15 pts) Let $p \in [1, \infty)$ and $\{f_n\}_{n=1}^{\infty}$ a sequence of functions in $L^p(\mathbb{R})$ such that $f_n \to f$ a.e. and $f \in L^p(\mathbb{R})$.
 - (i) If $p \in (1, \infty)$, prove that if $\sup_n ||f_n||_{L^p} < \infty$, then f_n converges to f weakly, i.e. for any $g \in L^q(\mathbb{R})$ with $q = \frac{p}{p-1}$,

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n g dx = \int_{\mathbb{R}} f g dx.$$

- (ii) Show that the result in (1) does not hold when $p = 1, q = \infty$.
- 7. (15 pts) Assume that $n \ge 2$, $p \in (1, 2)$, and $q \in [p, +\infty]$.
 - (i) Show that there exists a constant C (may depend on p, q, n) such that for all radial function $f \in C_c^{\infty}(\mathbb{R}^n \setminus \overline{B})$, there holds:

$$||f||_{L^q(\mathbb{R}^n)} \le C ||f||_{W^{1,p}(\mathbb{R}^n)}.$$

Here \overline{B} is the closed unit ball in \mathbb{R}^n

(ii) Show that F has a compact closure in X. Here X is the closure of $\{f \in C_c^{\infty}(\mathbb{R}^n \setminus \overline{B}) : f \text{ is radial}\}$ under $L^{\infty}(\mathbb{R}^n)$ -norm and

$$F = \left\{ f \in C_c^{\infty}(\mathbb{R}^n \setminus \overline{B}) : f \text{ is radial and } \|f\|_{W^{1,p}(\mathbb{R}^n)} \le 1 \right\} \right\}$$

8. (15 pts) Given a domain $\Omega \subset \mathbb{C}$ and a point $p \in \Omega$, define

$$c(p) = \sup\{|f'(p)|: f \in (\Omega, D)_p\},\$$

where D is the open unit disk |z| < 1 and $(\Omega, D)_p$ is the set of holomorphic maps $f: \Omega \to D$ with f(p) = 0.

- (i) Find the value of c(p) when $\Omega = \mathbb{C} \setminus \{0, 1, 2\}$.
- (ii) Find the value of c(p) when $\Omega = D$.