QUALIFY EXAM FOR APPLIED MATHEMATICS

1. (15 points) Assume that f is a periodic function with period 2π . Considering the integration $I(f) = \int_0^{2\pi} f(x) dx$, prove the following statements on the order of convergence of composite trapezoidal rule: $I_h^{Tr}(f) = h \sum_{i=1}^n f(i \cdot h)$, where $h = 2\pi/n$.

(i) Assume further that $f \in C^m([0, 2\pi])$, prove that the above rule achieves m-th order convergence, i.e. $\exists C > 0$ s.t. $|I(f) - I_h^{Tr}(f)| \leq C \cdot h^m$.

(ii) Assume further that f is analytic, prove that the above rule achieves exponential convergence.

2. (15 points) Let f be a continuous function that is $C^m (m \ge 1)$, such that $f(\alpha) = f^{(1)}(\alpha) = \cdots = f^{(m-1)}(\alpha) = 0$ and $f^{(m)} \ne 0$. Answer the following questions:

(i) If m = 1, i.e. α is a simple zero of the function f, prove that there exists a neighborhood of α : $D(\alpha, \delta) = \{x : |x - \alpha| \le \delta\}$, s.t. $\forall x_0 \in D(\alpha, \delta)$, the sequence generated by Newton's iteration converges to α , and the rate of convergence is quadratic.

(ii) If m > 1, i.e. α is a zero with multiplicity greater than 1, what is the rate of convergence of Newton's iteration? How about the modified Newton's iteration: $x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}$? Please prove your results.

(iii) If the multiplicity m is greater than 1 in general but the value is unknown, can you propose an iteration method that achieves superlinear convergence? (You don't need to prove the result.)

3. (20 points) The Sherman-Morrison formula (or the generalized version named Sherman-Morrison-Woodbury formula) is an useful tool in numerical linear algebra. It states: if $A \in \mathbb{R}^{n \times n}$ is an invertible matrix, $u, v \in \mathbb{R}^n$ are two vectors satisfying $1 + v^T A^{-1} u \neq 0$, then the matrix $A + uv^T$ is invertible and can be computed by

$$(A + uv^{T})^{-1} = A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u}$$

(i) Prove the above statement.

(ii) If $\{s_j\}_{j=1}^n$ and $\{t_j\}_{j=1}^n$ are two sets of points in [0,1], $A \in \mathbb{R}^{n \times n}$ is a matrix defined by:

$$A_{j,k} = 4n * \delta_{j,k} + \cos(t_j - s_k) ,$$

where $\delta_{j,k}$ is the Kronecker delta ($\delta_{j,k} = 1$ when j = k, $\delta_{j,k} = 0$ otherwise). $b \in \mathbb{R}^n$ is an arbitrary vector. Please give methods for the evaluation of Ab, A^{-1} , and |A|, all with the computational complexity of O(n).

4. (15 points) For the system

$$u_t = -v_{xx}, \quad v_t = u_{xx},$$

Date: Spring, 2025.

analyse the truncation error and stability of the scheme

$$\begin{split} \frac{u_j^{n+1}-u_j^n}{\tau} &= -\frac{1}{2h^2}(v_{j+1}^n-2v_j^n+v_{j-1}^n+v_{j+1}^{n+1}-2v_j^{n+1}+v_{j-1}^{n+1}),\\ \frac{v_j^{n+1}-v_j^n}{\tau} &= \frac{1}{2h^2}(u_{j+1}^n-2u_j^n+u_{j-1}^n+u_{j+1}^{n+1}-2u_j^{n+1}+u_{j-1}^{n+1}). \end{split}$$

5. (15 points) For the advection equation $u_t + au_x = 0$ (a is a constant), the Lax-Wendroff scheme reads as

$$u_{j}^{n+1} = -\frac{1}{2}\nu(1-\nu)u_{j+1}^{n} + (1-\nu^{2})u_{j}^{n} + \frac{1}{2}\nu(1+\nu)u_{j-1}^{n},$$

where $\nu = a\tau/h$.

 $\| \cdot \|$

(i) For the Cauchy problem imposed on the real line, show that

$$u^{n+1}\|_{2}^{2} = \|u^{n}\|_{2}^{2} - \frac{1}{2}\nu^{2}(1-\nu^{2})\left(\|\delta_{x}^{+}u^{n}\|_{2}^{2} - \langle\delta_{x}^{+}u^{n}, \delta_{x}^{-}u^{n}\rangle\right),$$

where

$$||v||_2^2 = \sum_j |v_j|^2, \quad \langle v, w \rangle = \sum_j v_j w_j, \quad \delta_x^- v_j = v_j - v_{j-1}, \quad \delta_x^+ v_j = v_{j+1} - v_j.$$

(ii) Suppose a > 0, for the problem imposed on (0, 1) with homogeneous boundary condition at x = 0 (i.e., $u_0^n = 0$), give a simple numerical boundary condition for x = 1 such that the Lax-Wendroff scheme is stable.

Remark: You can choose either 6 or 7. The points will be decided as $\max(6,7)$.

6. (20 points) Consider a harmonic oscillator with a cubic damping term

$$y'' + y + \epsilon(y')^3 = 0,$$
 $y(0) = 1, y'(0) = 0.$

where $y = y(t), t \ge 0, \epsilon > 0$.

(i) For small ϵ , use the multiple-scale method to study the behavior of y(t) for large t, i.e., construct a proper asymptotic solution.

(ii) Make a conclusion on the validity of your asymptotic solution. Briefly justify your conclusion.

7. (20 points) Let K be a nonempty closed convex set in \mathbb{R}^n . For any $z \in \mathbb{R}^n$, define $\Pi_K(z)$ as the optimal solution of the problem $\min \frac{1}{2} ||y - z||$, s.t. $y \in K$. Prove the following statements.

(i) Show that $\Pi_K(z)$ satisfies

$$\langle z - \Pi_K(z), d - \Pi_K(z) \rangle \le 0, \quad \forall d \in K.$$

(ii) Define

$$\Theta(z) := \frac{1}{2} \|z - \Pi_K(z)\|^2.$$

Prove that $\Theta(\cdot)$ is continuous differentiable convex function and

$$\nabla \Theta(z) = z - \Pi_K(z).$$