
Classical Mechenics (25 pts)

Consider a point particle with mass m, moving on a fixed sphere with radius R
with gravity constant g.

1. Write down the Lagrangian in spherical coordinates (r, θ, φ). Write down
explicit expressions for the two conserved quantities.

2. Write down the Hamiltonian in spherical coordinates (r, θ, φ) and their
corresponding conjugate momenta. Show that the Poisson bracket of the
above two conserved quantities is 0.

3. Using the expressions in question 1, write the time t as an integral of θ,
and φ as an integral of θ.

4. If the particle moves on a horizontal circle with azimuthal angle θ, what
is the angular velocity of this periodic orbit?

5. If the particle has a z-component Mz of the orbital angular momentum,
all its trajectories will lie between two horizontal circles on the sphere.
Find an equation for the position of these circles. How many solutions
does this equation have? Which solutions correspond to the positions of
these two circles?

Quantum Mechanics (25 pts)

Consider a particle on the x-axis with potential U(x) such that U(x) vanishes as
x→ ±∞, and U(x) is everywhere negative and smooth. Recall that the ground
state for such a system is always a nondegenerate bound state.

1. Define V (x) = U(x)−E0 where E0 is the grouund state energy. Write the
Hamiltonian in factorized form as H = A†A+E0, where A = c ddx +W (x)
and c is a constant. Determine c and W (x). (Hint: Express V (x) in terms
of the ground state wave function φ0(x) and then try to express W in
terms of φ0(x).)

2. Show that A annihilates φ0(x).

3. Show that H1 = A†A+E0 and H2 = AA†+E0 have the same eigenvalues
En > E0. Given an eigenvector |En〉 of H1 with eigenvalue En > E0,
construct an eigenvector of H2 with the same eigenvalue.

4. For H1 = A†A + E0 and H2 = AA† + E0. Let A†A = − ~2

2m
d2

dx2 + V1 and

AA† = − ~2

2m
d2

dx2 + V2. Construct W (x) which gives V1 = a2, where a is a
constant, and construct the corresponding V2(x).

5. If A†A has a constant potential V1 = a2, the eigenfunctions for H1 are
plane waves. Construct eigenfuctions of H2 using these eigenfunctions

1



of H1. Show these eigenfunctions have no reflection from V2(x), i. e.
for every incoming plane wave of the continuous spectrum there is only
transmission wave.

Thermodynamics (25 pts)

Consider an ideal 3d gas of N ultra-relativistic electrons (spin 1/2) with energies
E~p = |~p|c (where ~p is electron’s momentum, and c the speed of light), confined
to volume V

1. For the gas in equilibrium at 0 temperature, calculate its chemical poten-
tial µ (i.e. the Fermi energy EF ) and the total energy E0, and express E0

in terms of N and EF .

2. Now consider the gas in equilibrium at a low temperature T � EF /kB .
In the first nonvanishiong approximation in T , calculate the chemical po-
tential, and express your result in terms of EF and T .

3. Again at low temperature T � EF /kB as in question 2, calculate the
specific heat (i.e. the heat capacity per particle) of the gas, and express
it in terms of EF and T .

4. Obtain general expressions for the grand thermodynamic potential of the
gas and its pressure, and express them via the total energy of the gas and
its volume.

5. Express the gas pressure at T = 0 in terms of N and V .

Hint 1: You may find the following Sommerfeld expansion useful∫ ∞
0

F (E)f(E)dE =

∫ µ

0

F (E)dE +
π2

6
(kBT

2)F ′(µ) +O

((
kBT

µ

)4
)
, (1)

where

f(E) =
1

e(E−µ)/(kBT ) + 1
, (2)

is the Fermi-Dirac distribution, F (E) is any differentiable function, growing
slower than 1/f(E) at E →∞ and F ′(E) is its derivative.

Hint 2: The grand thermodynamic potential for each state of a Fermi gas is

Ω(E) = −kBT ln(1 + e(µ−E)/(kBT )). (3)

If the total grand thermodynamic potential of the system is Ω, then P =
−
(
∂Ω
∂V

)
T,N

.
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Electrodynamics (25 pts)

A uniform conducting sphere of radius a, with electric and magnetic permeabil-
ities ε = µ = 1 and conductivity σ, rotates with constant angular velocity ω
around the z-axis. A uniform magnetic field of magnitude B is applied along the
axis of rotation. The initial charge on the sphere is zero. Ignoring the magnetic
field due to the rotating sphere, evaluate in the steady state:

1. The electric field in the sphere. (Hint: in equilibrium, the free charges
(electrons) in the sphere redistribute because of the Lorentz force)

2. The volume charge density inside the sphere.

3. The electric potential and field inside and outside the sphere. Hint: when
r > a the potential with cylindrical symmetry can be expanded in terms
of Legendre polynomials

φ(r > 0) =
∞∑
n=0

Cn
an

rn+1
Pn(cos θ). (4)

4. The charge density on the surface of the sphere.

Legendre polynomials

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), P3(x) =

1

2
(5x3 − 3x). (5)
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