Qualifying Exam: 2024 Fall

考试课程: Probability & Statistics 姓名: 学号:

.

- There are 11 problems in this exam (4 pages). You need to choose 8 of them to solve. If you select more than 8, only the first 8 that you have worked on will be graded. Note that 4 of the problems are worth 15 points each and the rest 10 points each.
- You must follow all the rules of exam taking. Misconducts will be subject to proper disciplinary actions by the Center.
- You must provide all necessary details for full credits. A final answer with no or little explanation/derivation, even if correct, receives a minimal credit.
- R denotes the set of real numbers and $\mathbb{N} = \{1, 2, 3, \ldots\}$ denotes the set of positive integers. $\stackrel{(d)}{\longrightarrow}$ and $\stackrel{(d)}{=}$ mean "converges in distribution" and "equal in distribution", respectively.
- 1. (10 points) Let U_1, U_2, \ldots be independent identically distributed (i.i.d.) random variables uniformly distributed on [0, 1], and define $S_n = \sum_{k=1}^n U_k$.
	- (a) Calculate $\mathbb{E}[(S_n)^4]$.
	- (b) Determine the distribution of S_3 .
- 2. (10 points) Let $(Y_n)_{n\geq 1}$ be a sequence of real-valued random variables such that

$$
\sqrt{n}(Y_n - a) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, \sigma^2),
$$

where $\mathcal{N}(0, \sigma^2)$ stands for the normal distribution with $\sigma \neq 0$.

(a) Let $g : \mathbb{R} \to \mathbb{R}$ be a function such that it is differentiable at *a* and $g'(a) \neq 0$. Prove that

$$
\sqrt{n}(g(Y_n) - g(a)) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, g'(a)^2 \sigma^2).
$$

(b) Fix $p \in (0,1)$. For $n \in \mathbb{N}$, let $Z_n \stackrel{(d)}{=} \text{Bin}(n, p)$ be a binomial random variable. Prove that

$$
\sqrt{n}\left(\ln\left(\frac{Z_n}{n}\right) - \ln p\right) \xrightarrow[n \to \infty]{(d)} \mathcal{N}\left(0, \frac{1-p}{p}\right)
$$

- 3. (10 points) Let *X* be a real-valued random variable. Prove that the following properties are equivalent in the sense that the parameters $K_i > 0$ appearing in these properties differ from each other by at most an absolute constant factor.
	- (a) The tails of *X* satisfy that

$$
\mathbb{P}(|X| \ge t) \le 2 \exp(-t/K_1) \quad \text{for all } t \ge 0.
$$

(b) The moments of *X* satisfy that

 $\mathbb{E}(|X|^p) \le (K_2p)^p$ for all $p \in \mathbb{N}$.

第 1 页, 共 4 页

(c) The moment generating function of *|X|* is bounded at some point, i.e.,

$$
\mathbb{E}\exp(|X|/K_3) \le 2
$$

for some $K_3 > 0$.

Hint: You can use Stirling's approximations: $e(n/e)^n \leq n! \leq en(n/e)^n$ for all $n \in \mathbb{N}$ and

$$
n! = (1 + o(1))\sqrt{2\pi n}(n/e)^n \quad \text{ for large } n.
$$

4. (10 points) Let T*^d* be an infinite *d*-regular tree, where every node has degree *d*. On the other hand, let \mathcal{T}_b be an infinite *b*-ary tree with root *o*. In other words, \mathcal{T}_b is an infinite tree where every node has *b* children nodes and every non-root node has one parent node. Below is an illustration of a binary tree with $b = 2$.

Consider the simple random walk X_n on \mathbb{T}_d and simple random walk Y_n on \mathcal{T}_b , where at each step, the walker moves to the neighbor nodes with equal probability.

- (a) For each $d \in \mathbb{N}$ with $d \geq 2$, determine whether the simple random walk X_n on \mathbb{T}_d is recurrent or transient. Prove your claim.
- (b) For each $b \in \mathbb{N}$, determine whether the simple random walk Y_n on \mathcal{T}_b is recurrent or transient. Prove your claim. (Hint: Use part (a).)
- 5. (15 points) Let X_1, X_2, \ldots be i.i.d. random variables with exponential distribution: $\mathbb{P}(X_k >$ $f(x) = e^{-x}$ for $x \geq 0$. Define

$$
M_n := \sum_{k=1}^n \frac{X_k}{k}.
$$

(a) Prove that $(M_n - \ln n)_{n \in \mathbb{N}}$ converges to a limit *Y* almost surely.

(b) Prove that, for every $p \in (0, 1)$, $\left(\frac{\exp(pM_n)}{n^p}\right)$ converges to a limit *Z* in L^1 .

- 6. (15 points) Let B_t be a one-dimensional (1D) standard Brownian motion started from 0.
	- (a) Consider a Brownian motion $X_t = x + B_t$ started at some $x > 0$. For any $t > 0$ and $b > a > 0$, compute the probability of $X_t \in [a, b]$ conditioning on that X_t does not hit zero between 0 and *t*, i.e.,

$$
\mathbb{P}\left(X_t \in [a, b] \mid \min_{0 \le s \le t} X_s > 0\right).
$$

$$
\hat{\mathfrak{B}} \quad 2 \quad \overline{\mathfrak{D}}, \quad \underline{\mathfrak{B}} \quad 4 \quad \overline{\mathfrak{D}}
$$

(b) A **Brownian bridge** W_t on [0,1] is a 1D standard Brownian motion B_t subject to the condition that $B_1 = 0$. In other words, $W_t = (B_t | B_1 = 0)$ is a continuous-time Gaussian process whose probability distribution is the conditional probability distribution of *B^t* conditioning on $B_1 = 0$. A 1D **Gaussian free field** (GFF) h_t on [0, 1] with zero boundary is a continuous-time Gaussian process subject to the zero boundary condition $h_0 = h_1 = 0$ and has zero mean $\mathbb{E}h_t = 0, t \in [0,1]$, and covariances

$$
\mathbb{E}(h_t h_s) = G(t, s), \quad t, s \in [0, 1].
$$

Here, $G(t, s)$ is the Green's function of the Laplace operator $-\Delta$, i.e., $G(t, s)$ is the unique continuous function such that for any smooth test function $f \in C_c^{\infty}(0,1)$,

$$
\int_0^1 G(t,s) \frac{\partial^2}{\partial t^2} f(t) dt = -f(s) \text{ and } G(0,s) = G(1,s) = 0.
$$

Prove that the process $(W_t : t \in [0,1])$ has the same distribution as the process $(h_t : t \in [0,1])$ [0, 1]) in the sense that for any fixed $0 \le t_1 < t_2 < \ldots t_n \le 1$ and Borel sets O_1, O_2, \ldots, O_n ,

$$
\mathbb{P}(W_{t_1} \in O_1, \ldots, W_{t_n} \in O_n) = \mathbb{P}(h_{t_1} \in O_1, \ldots, h_{t_n} \in O_n).
$$

(Hint: Find the explicit form of the function $G(t, s)$ and calculate $\mathbb{E}(W_t W_s)$.)

- 7. (10 points) Let $X_1, ..., X_n$ be an iid sample from $N(\mu, 1)$ with μ unknown. Unfortunately, one forgets to record $X_1, ..., X_n$ in a study and only records $\mathbf{Y} = (Y_1, ..., Y_n)$ where $Y_i = I(X_i < 0)$ and $I(\cdot)$ is the indicator function.
	- (a) Derive the MLE of μ based on the observed data Y.
	- (b) Construct a **size** α uniformly most powerful (UMP) test for testing $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$ based on the observed data **Y**.
	- (c) Describe how to construct a (1α) confidence interval for μ based on the observed data Y.
- 8. (10 points) Consider the following linear model $Y_i = \mathbf{z}_i^T \beta + \epsilon_i, i = 1, ..., n$. $\mathbf{z}_1, ..., \mathbf{z}_n \in R^d$ are fixed and given, and $\beta \in \mathbb{R}^d$ is unknown. $\epsilon'_i s$ are random variables satisfying the Gauss-Markov assumptions that $E[\epsilon_i] = 0$, $Var[\epsilon_i] = \sigma^2$ and $Cov(\epsilon_i, \epsilon_j) = 0$, $\forall i \neq j$. Let $\mathbf{Y} = (Y_1, ..., Y_n)^T$, and
	- $\mathbf{Z} =$ $\sqrt{2}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ \mathbf{z}_1^T
 \mathbf{z}_2^T
 \vdots \mathbf{z}_n^T *n* \setminus be the n by d design matrix.
	- (a) Let $\hat{\beta}$ be the least squares estimate of β which is given by $\hat{\beta} = (\mathbf{Z}^T \mathbf{Z})^{-1} \mathbf{Z}^T \mathbf{Y}$. Let $\theta = \mathbf{b}^T \beta$ where $\mathbf{b} \in R^d$ is a known vector. Write down the mean and the variance of $\hat{\theta}$ where $\hat{\theta} = \mathbf{b}^T \hat{\beta}$. Further, **prove** that under the Gauss-Markov assumptions, the estimator $\hat{\theta}$ has the smallest variance among all linear unbiased estimator of *θ*. Here linear unbiased estimator we mean estimator in the form of $\mathbf{c}^T \mathbf{Y}$ and is unbiased for θ .
	- (b) Further assume that $(\epsilon_1, ..., \epsilon_n)$ are iid from $N(0, \sigma^2)$ with σ^2 known. Derive the information matrix $I(\beta)$.
- 9. (10 points) Suppose $X_1, ..., X_n$ are IID from the uniform distribution on $[0, \theta]$ for some unknown $\theta > 0$. Fix $t \in (0, \theta)$. Consider two estimators of $P(X_1 \leq t)$: $F_n(t) = \frac{1}{n} \sum_{i=1}^n I_{\{X_i \leq t\}}$ and $T_n(t) = t/(2\overline{X})$, where \overline{X} is the sample mean.
	- (a) Find the asymptotic distributions of the two estimators.

第 3 页, 共 4 页

- (b) For what value of *t* will the first estimator have a smaller asymptotic variance than the second estimator?
- (c) Let $\theta = 1$. For the $F_n(t)$ defined above, find the asymptotic distribution of $nF_n(n^{-1/2})$ \sqrt{n} .
- 10. (15 points) Let $X_1, ..., X_n$ $(n \ge 2)$ be iid from $N(\mu, \sigma^2)$ distribution with $\mu \ge 0$ and $\sigma > 0$ being the unknown parameters. Let \bar{X} and S^2 be the sample mean and sample variance, respectively. Recall χ_k^2 has probability density function

$$
\frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)}\,x^{\frac{k}{2}-1}e^{-\frac{x}{2}}, x \ge 0.
$$

- (a) Show \bar{X} and S^2 are independent.
- (b) Find UMVUE of μ/σ if it exists.
- (c) Is \bar{X} admissible for estimating μ under the square error loss? Prove your assertion.
- 11. (15 points) Let $X_1, ..., X_n$ be an iid sample from Uniform $[\theta, \theta + |\theta|]$ where $\theta \neq 0$.
	- (a) Derive the method of moments estimator of *θ*
	- (b) Derive the MLE of θ , $\hat{\theta}$.
	- (c) Is $\hat{\theta}$ a consistent estimator of θ ? Please explain your answer.