Qualifying Exam: 2024 Fall

姓名: __

考试课程: Probability & Statistics

学号: _____

- There are 11 problems in this exam (4 pages). You need to choose 8 of them to solve. If you select more than 8, only the first 8 that you have worked on will be graded. Note that 4 of the problems are worth 15 points each and the rest 10 points each.
- You must follow all the rules of exam taking. Misconducts will be subject to proper disciplinary actions by the Center.
- You must provide all necessary details for full credits. A final answer with no or little explanation/derivation, even if correct, receives a minimal credit.
- R denotes the set of real numbers and ℕ = {1, 2, 3, ...} denotes the set of positive integers.

 ^(d)→ and ^(d) mean "converges in distribution" and "equal in distribution", respectively.
- 1. (10 points) Let U_1, U_2, \ldots be independent identically distributed (i.i.d.) random variables uniformly distributed on [0, 1], and define $S_n = \sum_{k=1}^n U_k$.
 - (a) Calculate $\mathbb{E}[(S_n)^4]$.
 - (b) Determine the distribution of S_3 .
- 2. (10 points) Let $(Y_n)_{n\geq 1}$ be a sequence of real-valued random variables such that

$$\sqrt{n}(Y_n-a) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0,\sigma^2),$$

where $\mathcal{N}(0, \sigma^2)$ stands for the normal distribution with $\sigma \neq 0$.

(a) Let $g: \mathbb{R} \to \mathbb{R}$ be a function such that it is differentiable at a and $g'(a) \neq 0$. Prove that

$$\sqrt{n}(g(Y_n) - g(a)) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, g'(a)^2 \sigma^2).$$

(b) Fix $p \in (0,1)$. For $n \in \mathbb{N}$, let $Z_n \stackrel{(d)}{=} \operatorname{Bin}(n,p)$ be a binomial random variable. Prove that

$$\sqrt{n}\left(\ln\left(\frac{Z_n}{n}\right) - \ln p\right) \xrightarrow[n \to \infty]{(d)} \mathcal{N}\left(0, \frac{1-p}{p}\right)$$

- 3. (10 points) Let X be a real-valued random variable. Prove that the following properties are equivalent in the sense that the parameters $K_i > 0$ appearing in these properties differ from each other by at most an absolute constant factor.
 - (a) The tails of X satisfy that

$$\mathbb{P}(|X| \ge t) \le 2 \exp\left(-t/K_1\right) \quad \text{for all } t \ge 0.$$

(b) The moments of X satisfy that

 $\mathbb{E}\left(|X|^p\right) \le (K_2 p)^p \quad \text{for all } p \in \mathbb{N}.$

第1页,共4页

(c) The moment generating function of |X| is bounded at some point, i.e.,

$$\mathbb{E}\exp\left(|X|/K_3\right) \le 2$$

for some $K_3 > 0$.

Hint: You can use Stirling's approximations: $e(n/e)^n \leq n! \leq en(n/e)^n$ for all $n \in \mathbb{N}$ and

$$n! = (1 + o(1))\sqrt{2\pi n}(n/e)^n \quad \text{for large } n.$$

4. (10 points) Let \mathbb{T}_d be an infinite *d*-regular tree, where every node has degree *d*. On the other hand, let \mathcal{T}_b be an infinite *b*-ary tree with root *o*. In other words, \mathcal{T}_b is an infinite tree where every node has *b* children nodes and every non-root node has one parent node. Below is an illustration of a binary tree with b = 2.

Consider the simple random walk X_n on \mathbb{T}_d and simple random walk Y_n on \mathcal{T}_b , where at each step, the walker moves to the neighbor nodes with equal probability.

- (a) For each $d \in \mathbb{N}$ with $d \geq 2$, determine whether the simple random walk X_n on \mathbb{T}_d is recurrent or transient. Prove your claim.
- (b) For each $b \in \mathbb{N}$, determine whether the simple random walk Y_n on \mathcal{T}_b is recurrent or transient. Prove your claim. (Hint: Use part (a).)
- 5. (15 points) Let X_1, X_2, \ldots be i.i.d. random variables with exponential distribution: $\mathbb{P}(X_k > x) = e^{-x}$ for $x \ge 0$. Define

$$M_n := \sum_{k=1}^n \frac{X_k}{k}.$$

(a) Prove that $(M_n - \ln n)_{n \in \mathbb{N}}$ converges to a limit Y almost surely.

(b) Prove that, for every $p \in (0,1)$, $\left(\frac{\exp(pM_n)}{n^p}\right)_{n \in \mathbb{N}}$ converges to a limit Z in L^1 .

- 6. (15 points) Let B_t be a one-dimensional (1D) standard Brownian motion started from 0.
 - (a) Consider a Brownian motion $X_t = x + B_t$ started at some x > 0. For any t > 0 and b > a > 0, compute the probability of $X_t \in [a, b]$ conditioning on that X_t does not hit zero between 0 and t, i.e.,

(b) A **Brownian bridge** W_t on [0, 1] is a 1D standard Brownian motion B_t subject to the condition that $B_1 = 0$. In other words, $W_t = (B_t|B_1 = 0)$ is a continuous-time Gaussian process whose probability distribution is the conditional probability distribution of B_t conditioning on $B_1 = 0$. A 1D **Gaussian free field** (GFF) h_t on [0, 1] with zero boundary is a continuous-time Gaussian process subject to the zero boundary condition $h_0 = h_1 = 0$ and has zero mean $\mathbb{E}h_t = 0, t \in [0, 1]$, and covariances

$$\mathbb{E}(h_t h_s) = G(t, s), \quad t, s \in [0, 1].$$

Here, G(t, s) is the Green's function of the Laplace operator $-\Delta$, i.e., G(t, s) is the unique continuous function such that for any smooth test function $f \in C_c^{\infty}(0, 1)$,

$$\int_{0}^{1} G(t,s) \frac{\partial^{2}}{\partial t^{2}} f(t) dt = -f(s) \text{ and } G(0,s) = G(1,s) = 0.$$

Prove that the process $(W_t : t \in [0, 1])$ has the same distribution as the process $(h_t : t \in [0, 1])$ in the sense that for any fixed $0 \le t_1 < t_2 < \ldots t_n \le 1$ and Borel sets O_1, O_2, \ldots, O_n ,

$$\mathbb{P}(W_{t_1} \in O_1, \dots, W_{t_n} \in O_n) = \mathbb{P}(h_{t_1} \in O_1, \dots, h_{t_n} \in O_n).$$

(Hint: Find the explicit form of the function G(t, s) and calculate $\mathbb{E}(W_t W_s)$.)

- 7. (10 points) Let $X_1, ..., X_n$ be an iid sample from $N(\mu, 1)$ with μ unknown. Unfortunately, one forgets to record $X_1, ..., X_n$ in a study and only records $\mathbf{Y} = (Y_1, ..., Y_n)$ where $Y_i = I(X_i < 0)$ and $I(\cdot)$ is the indicator function.
 - (a) Derive the MLE of μ based on the observed data **Y**.
 - (b) Construct a size α uniformly most powerful (UMP) test for testing $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$ based on the observed data **Y**.
 - (c) Describe how to construct a (1α) confidence interval for μ based on the observed data **Y**.
- 8. (10 points) Consider the following linear model $Y_i = \mathbf{z}_i^T \beta + \epsilon_i$, i = 1, ..., n. $\mathbf{z}_1, ..., \mathbf{z}_n \in \mathbb{R}^d$ are fixed and given, and $\beta \in \mathbb{R}^d$ is unknown. $\epsilon'_i s$ are random variables satisfying the Gauss-Markov assumptions that $\mathbf{E}[\epsilon_i] = 0$, $\operatorname{Var}[\epsilon_i] = \sigma^2$ and $\operatorname{Cov}(\epsilon_i, \epsilon_j) = 0, \forall i \neq j$. Let $\mathbf{Y} = (Y_1, ..., Y_n)^T$, and
 - $\mathbf{Z} = \begin{pmatrix} \mathbf{z}_1^T \\ \mathbf{z}_2^T \\ \vdots \\ \mathbf{z}_n^T \end{pmatrix} \text{ be the } n \text{ by } d \text{ design matrix.}$
 - (a) Let $\hat{\beta}$ be the least squares estimate of β which is given by $\hat{\beta} = (\mathbf{Z}^T \mathbf{Z})^{-1} \mathbf{Z}^T \mathbf{Y}$. Let $\theta = \mathbf{b}^T \beta$ where $\mathbf{b} \in \mathbb{R}^d$ is a known vector. Write down the mean and the variance of $\hat{\theta}$ where $\hat{\theta} = \mathbf{b}^T \hat{\beta}$. Further, **prove** that under the Gauss-Markov assumptions, the estimator $\hat{\theta}$ has the smallest variance among all linear unbiased estimator of θ . Here linear unbiased estimator we mean estimator in the form of $\mathbf{c}^T \mathbf{Y}$ and is unbiased for θ .
 - (b) Further assume that $(\epsilon_1, ..., \epsilon_n)$ are iid from N $(0, \sigma^2)$ with σ^2 known. Derive the information matrix $I(\beta)$.
- 9. (10 points) Suppose $X_1, ..., X_n$ are IID from the uniform distribution on $[0, \theta]$ for some unknown $\theta > 0$. Fix $t \in (0, \theta)$. Consider two estimators of $P(X_1 \leq t)$: $F_n(t) = \frac{1}{n} \sum_{i=1}^n I_{\{X_i \leq t\}}$ and $T_n(t) = t/(2\bar{X})$, where \bar{X} is the sample mean.
 - (a) Find the asymptotic distributions of the two estimators.

- (b) For what value of t will the first estimator have a smaller asymptotic variance than the second estimator?
- (c) Let $\theta = 1$. For the $F_n(t)$ defined above, find the asymptotic distribution of $nF_n(n^{-1/2}) \sqrt{n}$.
- 10. (15 points) Let $X_1, ..., X_n$ $(n \ge 2)$ be iid from $N(\mu, \sigma^2)$ distribution with $\mu \ge 0$ and $\sigma > 0$ being the unknown parameters. Let \bar{X} and S^2 be the sample mean and sample variance, respectively. Recall χ_k^2 has probability density function

$$\frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)} x^{\frac{k}{2}-1} e^{-\frac{x}{2}}, x \ge 0.$$

- (a) Show \bar{X} and S^2 are independent.
- (b) Find UMVUE of μ/σ if it exists.
- (c) Is \bar{X} admissible for estimating μ under the square error loss? Prove your assertion.
- 11. (15 points) Let $X_1, ..., X_n$ be an iid sample from $\text{Uniform}[\theta, \ \theta + |\theta|]$ where $\theta \neq 0$.
 - (a) Derive the method of moments estimator of θ
 - (b) Derive the MLE of θ , $\hat{\theta}$.
 - (c) Is $\hat{\theta}$ a consistent estimator of θ ? Please explain your answer.