Qualifying Exam: 2024 Spring

Concentration: Probability & Statistics Name: _____ Student ID: _____

- There are 11 problems in this exam (2 pages). You choose 8 of them to finish. If you select more than 8, only the first 8 that you have worked on will be graded. Note that 4 of the problems are worth 15 points each and the rest 10 points each.
- You must follow all the rules of exam taking. Misconducts will be subject to proper disciplinary actions by the Center.
- You must provide all necessary details for full credits. A final answer with no or little explanation/derivation, even if correct, receives a minimal credit.

Note: $\ln x := \log_e x$. \mathbb{R} represents the set of all real numbers. $\mathbb{N} := \{1, 2, 3, ...\}$ denotes the set of all positive integers.

1. (10 points) Let X_1, X_2, \ldots be independent identically distributed random variables with density

$$f(x) = \begin{cases} |x|^{-3}, & |x| > 1\\ 0, & \text{otherwise} \end{cases}$$

and characteristic function $\phi(t) := \mathbb{E}e^{itX_1}$. Let $S_n := X_1 + X_2 + \cdots + X_n$ for each $n \in \mathbb{N}$.

- (a) Prove that $\mathbb{E}(X_1^2) = \infty$.
- (b) It is known that $\lim_{t\to 0} \frac{1-\phi(t)}{t^2 \ln |t|} = -1$; you do not need to prove this. Using this fact, find a sequence $(a_n)_{n\in\mathbb{N}}$ and prove that S_n/a_n converges in distribution to the standard normal distribution (i.e., mean 0 and variance 1).
- 2. (15 points) Let X_1, X_2, \ldots be independent identically distributed random variables with exponential distribution: $\mathbb{P}(X_k > x) = e^{-x}$ for $x \ge 0$. Let $M_n := \max_{1 \le k \le n} X_k$. Show that
 - (a) $\limsup_{n\to\infty} X_n / \ln n = 1$ almost surely.
 - (b) $\lim_{n\to\infty} M_n / \ln n = 1$ almost surely.
- 3. (10 points)
 - (a) Prove that: if $X_n \xrightarrow{P} X$ (i.e., X_n converges to X in probability) and $Y_n \xrightarrow{P} Y$ then $X_n Y_n \xrightarrow{P} XY$.
 - (b) Is the following true or false: if $X_n \xrightarrow{L^1} X$ (i.e., X_n converges to X in L^1) and $Y_n \xrightarrow{L^1} Y$ then $X_n Y_n \xrightarrow{L^1} XY$? Either prove it or give a counter example.
- 4. (15 points) Let $p \in (0, 1)$ and $k \in \mathbb{N}$. Let X_1, X_2, \cdots be independent random variables with $\mathbb{P}(X_n = 1) = p = 1 \mathbb{P}(X_n = -1)$ for each $n \in \mathbb{N}$. Let $X_0 := 0$ and $S_n := X_0 + X_1 + \cdots + X_n$ for each $n \in \mathbb{N} \cup \{0\}$. Let $T_k := \inf\{n \in \mathbb{N} : S_n = k\}$ with $\inf \emptyset = \infty$. For each $t \in \mathbb{R}$, let $M(t) := \mathbb{E}e^{tX_1}$.
 - (a) If $p \in [1/2, 1)$, prove that $e^{tk} \mathbb{E}M(t)^{-T_k} = 1$ for all t > 0.
 - (b) If $p \in (0, 1/2)$, compute $\mathbb{P}(T_k < \infty)$.

- (c) If $p \in (0, 1/2)$, find the distribution of $Y := 1 + \sup_{n>0} S_n$.
- 5. (10 points) Let S be a countable state space and $(Z_n, n \in \mathbb{N})$ be a sequence of independent identically distributed random variables taking values in a measurable space (E, \mathcal{E}) .
 - (a) Suppose that $f: S \times E \to S$ is a measurable mapping and X_0 is independent of all Z_n . Let

$$X_n := f(X_{n-1}, Z_n), n \in \mathbb{N}.$$
(1)

Prove that $(X_n, n \in \mathbb{N} \cup \{0\})$ is a Markov chain, and determine its transition probability.

- (b) Prove that any (discrete) time-homogeneous Markov chain on S can be written in the form (1).
- 6. (10 points) Let $(B_t, t \ge 0)$ be a one-dimensional Brownian motion starting from the origin (i.e., $B_0 = 0$). Let $\mathcal{F}_t := \sigma(B_s : s \le t)$ be the filtration generated by B_t . For a > 0, define $T_a := \inf\{t > 0 : B_t \ge a\}$.
 - (a) Prove that T_a is a \mathcal{F}_t stopping time.
 - (b) Compute $\mathbb{E}e^{-\lambda T_a}$ for $\lambda > 0$, and prove that $\mathbb{P}(T_a < \infty) = 1$. *Hint:* one may consider $M_t := e^{uB_t u^2 t/2}$.
- 7. (15 points) Let X_i be independent $N(\mu_i, 1), i = 1, ..., n$. Let $\mu = (\mu_1, ..., \mu_n)^T$, $\mathbf{X} = (X_1, ..., X_n)^T$, $\mathbf{a} = (a_1, ..., a_n)^T$. Consider the following loss function

$$l(\mu, \mathbf{a}) = \sum_{i=1}^{n} (a_i - \mu_i)^2$$

prove that $\delta(\mathbf{X}) = \mathbf{X}$ is minimax.

- 8. (10 points) Suppose $X_1, X_2, ..., X_n$ are i.i.d. random variables from $Uniform(\theta, \theta + 10)$ distribution with $\theta > 0$.
 - (a) Prove that $\hat{\theta} = \min(X_1, ..., X_n)$ is a consistent estimator of θ .
 - (b) Find the asymptotic distribution of

$$\sqrt{12n}\left(\frac{\overline{X}-5-\theta}{\hat{\theta}}\right),$$

where \overline{X} is the sample mean and $\hat{\theta}$ is the consistent estimator for θ in part (a).

- 9. (10 points) Let $(X_1, ..., X_n)$ be a random sample and assume that $\log X_i$ is distributed as $N(\theta, \theta)$ with an unknown parameter $\theta > 0$.
 - (a) Derive the MLE of θ , $\hat{\theta}$.
 - (b) What is the asymptotic distribution of $\hat{\theta}$?
- 10. (10 points) Let $X_1, ..., X_n$ be the incomes of n persons chosen at random from a certain population. Assume that X_i has the following Pareto density

$$f(x \mid \theta) = 100^{\theta} \theta x^{-(1+\theta)}, x > 100,$$

where $\theta > 1$. Let $\mu = E(X)$ be the mean of the income, write down the rejection region of the UMP level α ($0 < \alpha < 1$) test of testing $H_0: \mu = \mu_0$ versus $H_1: \mu > \mu_0$.

11. (15 points) Let θ_1 , θ_2 and θ_3 be nonnegative parameters with the constraint $\theta_1 + \theta_2 + \theta_3 = 1$. We observe $X_{i1} = \theta_1 + \epsilon_{i1}$, $X_{i2} = \theta_2 + \epsilon_{i2}$, $X_{i3} = \theta_3 + \epsilon_{i3}$ for i = 1, 2, ..., n, where $\epsilon_{ik} \sim N(0, 1)$ are independent normal random variables (k = 1, 2, 3). Derive the uniformly minimum-variance unbiased estimator (UMVUE) for θ_1 .