## 清华大学考试试题专用纸

Everyone needs to solve Problem 1, 2, 3, 4 (10 points each). Please select four problems in the following table and solve them (15 points each).

| Problem 5 | Problem 6 | Problem 7 | Problem 8 | Problem 9 | Problem 10 |
|-----------|-----------|-----------|-----------|-----------|------------|
|           |           |           |           |           |            |

- 1. Let M, N be closed, connected manifolds of **the same dimension**. Suppose  $f : M \to N$  is an immersion. Is the following true or false? If true, prove your claim. If false, give a counterexample and prove that your example is indeed a counterexample.
  - (a) f is injective.
  - (b) f is surjective.
  - (c) f is a homeomorphism.
  - (d) f is a covering map.
- 2. Let  $\mathbb{B}^n(r) = \{x \in \mathbb{R}^n \mid |x| < r\}$ . Compute the sectional curvature of

$$g = \frac{r^4}{(r^2 - |x|^2)} \sum_{i=1}^n dx^i \otimes dx^i.$$

3. Let X denote a closed orientable surface of genus 2. See the picture below with four curves labeled as  $e_1, e_2, e_3, e_4$ . Consider a group homomorphism

$$\rho: \pi_1(X) \to \mathbb{Z}/2\mathbb{Z}$$

such that  $\rho(e_4) = 1$  and  $\rho(e_i) = 0$  for i = 1, 2, 3.



- (a) Draw a picture of a covering space Y that corresponds to the subgroup ker  $\rho \subset \pi_1(X)$ .
- (b) On the picture, label all curves on Y which are preimages of  $e_1, e_2, e_3, e_4$ .

- (c) The signature  $\sigma(A)$  of a square matrix A is the number of its positive eigenvalues minus the number of its negative eigenvalues. Let T denote the nontrivial deck transformation of the covering  $Y \to X$ . Compute the signature  $\sigma(T_*)$  of  $T_*: H_1(Y) \to H_1(Y)$ .
- (d) Prove that there exists a homeomorphism  $\phi: X \to X$  such that  $\phi(e_1) = e_4$ .
- 4. Let (M, g) be a Riemannian manifold and X be a Killing field. If  $\gamma$  is a geodesic, show that  $J(t) = X \circ \gamma(t)$  is a Jacobi field along  $\gamma$ .
- 5. Compute the **cohomology ring** of  $H^*((S^2 \times S^8) # (S^4 \times S^6); \mathbb{Z})$ .
- 6. A Riemannian metric h on a Lie group G is said to be **left-invariant** if

$$L_a^* h = h$$

for all  $g \in G$ . A **right-invariant metric** is defined similarly. A metric that is both leftand right-invariant is said to be **bi-invariant**. Let (M, g) be a Riemannian manifold with a bi-invariant Riemannian metric g.

(A) Show that for all left-invariant vector fields X, Y, Z,

$$h([X,Y],Z) = h(X,[Y,Z]).$$

(B) Show that for any left-invariant vector fields X, Y,

$$\nabla_X Y = \frac{1}{2} [X, Y],$$

wehre  $\nabla$  is the Levi-Civita connection.

- 7. Suppose that M is a compact connected **nonorientable** 3-dimensional manifold. Prove that  $\pi_1(M)$  is infinite.
- 8. Let (M, g) be a simply connected complete Riemannian manifold. If the differential of each exponential map is length increasing, i.e.

$$\left| \left( d \exp_p \right)_v \tilde{v} \right| \ge |\tilde{v}|$$

for all  $p \in M$  and all  $v, \tilde{v} \in T_pM$ , show that (M, g) has non-positive sectional curvature.

- 9. Let  $SL_3(\mathbb{C})$  be the space of  $3 \times 3$  complex matrices with determinant 1. Compute  $\pi_3(SL_3\mathbb{C})$ .
- 10. Let (M, g) be an *n*-dimensional compact oriented Riemannian manifold with positive sectional curvature. Given an isometry  $F : M \to M$  such that F preserves the orientation when n is even, F changes the orientation when n is odd. Show that F has a fixed point.