Name:

Student ID:

Qualifying Exam-Analysis

Fall 2023

1. (10 pts) For all $\xi \in \mathbb{R}$, compute

$$\int_{\mathbb{R}} \frac{e^{-ix\xi}}{(1+x^2)^2} dx.$$

2. (10 pts) Find all equilibrium points of the following system of ordinary differential equations for (x(t), y(t)) and determine their stability (stable or unstable):

$$\frac{dx}{dt} = \log(y^2 - x); \quad \frac{dy}{dt} = x - y - 1.$$

3. (10 pts) Find all distributions u on \mathbb{R}^2 such that

$$x_1 x_2 u = (x_1^2 - x_2^2)u = 0.$$

4. (10 pts) Consider the initial value problem for Burgers' equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0, \quad (t, x) \in (0, \infty) \times \mathbb{R}$$
$$u(0, x) = -x + x^3, \quad x \in \mathbb{R}.$$

Determine $T_{\max} > 0$ such that the problem has a C^1 solution in $(0, T_{\max}) \times \mathbb{R}$, but not in $(0, T) \times \mathbb{R}$ for any $T > T_{\max}$.

5. (15 pts) Determine whether the following statement is true or not: If $f \in L^1(\mathbb{R})$ and $g \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})$, then their convolution f * g is a continuous function on \mathbb{R} and satisfies

$$\lim_{|x| \to \infty} f * g(x) = 0.$$

Prove the statement if it is true and give a counterexample otherwise.

6. (15 pts) Let $\mathbb{D} = \{z : |z| < 1\} \subset \mathbb{C}$ be the unit disk and $g : \mathbb{D} \to \mathbb{C}$ be a holomorphic function such that g(0) = 0 and $|\operatorname{Re} g(z)| < 1$ for any $z \in \mathbb{D}$. Prove that for any $z \in \mathbb{D}$,

$$|g(z)| \le \frac{2}{\pi} \log \frac{1+|z|}{1-|z|}.$$

7. (15 pts) Let \mathcal{H} be a complex Hilbert space, $T : \mathcal{H} \to \mathcal{H}$ be a bounded linear operator, $\sigma(T)$ be the spectrum of T. We also define the numerical range of T to be

$$N(T) := \{(\psi, T\psi) | \psi \in \mathcal{H}, \|\psi\| = 1\} \subset \mathbb{C}$$

where (\cdot, \cdot) and $\|\cdot\|$ denote the inner product and the norm on \mathcal{H} , respectively.

- (1) Show that N(T) is a convex set in \mathbb{C} .
- (2) For any $\psi \in \mathcal{H}$ and $z \in \mathbb{C}$, show that

$$||(T-z)\psi|| \ge d(z, N(T))||\psi||.$$

Here d(z, N(T)) is the distance from z to N(T) in \mathbb{C} .

(3) Let $\overline{N(T)}$ be the closure of N(T) in \mathbb{C} , show that $\sigma(T) \subset \overline{N(T)}$ and for any $z \in \mathbb{C} \setminus \overline{N(T)}$,

$$||(T-z)^{-1}|| \le d(z, N(T))^{-1}.$$

Here the norm on the left-hand side is the operator norm for bounded linear operator on \mathcal{H} .

8. (15 pts) Consider the following initial value problem for the heat equation in \mathbb{R}^{1+3} :

$$\frac{\partial u}{\partial t} - \Delta u = \mathcal{N}(u); \quad t > 0, x \in \mathbb{R}^3$$
$$u(0, x) = f(x) \in \mathcal{S}(\mathbb{R}^3).$$

Here $\mathcal{S}(\mathbb{R}^3)$ is the Schwartz class of functions on \mathbb{R}^3 .

(1) If $\mathcal{N}(u) \equiv 0$, show that the unique solution u = u(t, x) in $C([0, \infty); \mathcal{S}(\mathbb{R}^3))$ satisfies

$$||u(t,\cdot)||_{L^{\infty}(\mathbb{R}^3)} \le C(f)(1+t)^{-3/2}$$

where C(f) is a constant depending only on $f \in \mathcal{S}(\mathbb{R}^3)$.

(2) If $\mathcal{N}(u) = u^4$, show that there exists $\varepsilon_0 > 0$ such that for any $f \in \mathcal{S}(\mathbb{R}^3)$ with

$$\sup_{\alpha,\beta\in\mathbb{N}^3, |\alpha|+|\beta|\leq 1000} \sup_{x\in\mathbb{R}^3} |x^{\alpha}\partial^{\beta}f(x)| \leq \varepsilon_0$$

there is a solution $u = u(t, x) \in C^1((0, \infty); H^{10}(\mathbb{R}^3)).$