\qquad Student ID: \qquad

Qualifying Exam-Analysis

Fall 2023

1. (10 pts) For all $\xi \in \mathbb{R}$, compute

$$
\int_{\mathbb{R}} \frac{e^{-i x \xi}}{\left(1+x^{2}\right)^{2}} d x
$$

2. (10 pts) Find all equilibrium points of the following system of ordinary differential equations for $(x(t), y(t))$ and determine their stability (stable or unstable):

$$
\frac{d x}{d t}=\log \left(y^{2}-x\right) ; \quad \frac{d y}{d t}=x-y-1 .
$$

3. (10 pts) Find all distributions u on \mathbb{R}^{2} such that

$$
x_{1} x_{2} u=\left(x_{1}^{2}-x_{2}^{2}\right) u=0 .
$$

4. (10 pts) Consider the initial value problem for Burgers' equation

$$
\begin{gathered}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0, \quad(t, x) \in(0, \infty) \times \mathbb{R} \\
u(0, x)=-x+x^{3}, \quad x \in \mathbb{R} .
\end{gathered}
$$

Determine $T_{\max }>0$ such that the problem has a C^{1} solution in $\left(0, T_{\max }\right) \times \mathbb{R}$, but not in $(0, T) \times \mathbb{R}$ for any $T>T_{\max }$.
5. (15 pts) Determine whether the following statement is true or not: If $f \in L^{1}(\mathbb{R})$ and $g \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$, then their convolution $f * g$ is a continuous function on \mathbb{R} and satisfies

$$
\lim _{|x| \rightarrow \infty} f * g(x)=0 .
$$

Prove the statement if it is true and give a counterexample otherwise.
6. (15 pts) Let $\mathbb{D}=\{z:|z|<1\} \subset \mathbb{C}$ be the unit disk and $g: \mathbb{D} \rightarrow \mathbb{C}$ be a holomorphic function such that $g(0)=0$ and $|\operatorname{Re} g(z)|<1$ for any $z \in \mathbb{D}$. Prove that for any $z \in \mathbb{D}$,

$$
|g(z)| \leq \frac{2}{\pi} \log \frac{1+|z|}{1-|z|}
$$

7. (15 pts) Let \mathcal{H} be a complex Hilbert space, $T: \mathcal{H} \rightarrow \mathcal{H}$ be a bounded linear operator, $\sigma(T)$ be the spectrum of T. We also define the numerical range of T to be

$$
N(T):=\{(\psi, T \psi) \mid \psi \in \mathcal{H},\|\psi\|=1\} \subset \mathbb{C}
$$

where (\cdot, \cdot) and $\|\cdot\|$ denote the inner product and the norm on \mathcal{H}, respectively.
(1) Show that $N(T)$ is a convex set in \mathbb{C}.
(2) For any $\psi \in \mathcal{H}$ and $z \in \mathbb{C}$, show that

$$
\|(T-z) \psi\| \geq d(z, N(T))\|\psi\|
$$

Here $d(z, N(T))$ is the distance from z to $N(T)$ in \mathbb{C}.
(3) Let $\overline{N(T)}$ be the closure of $N(T)$ in \mathbb{C}, show that $\sigma(T) \subset \overline{N(T)}$ and for any $z \in \mathbb{C} \backslash \overline{N(T)}$,

$$
\left\|(T-z)^{-1}\right\| \leq d(z, N(T))^{-1}
$$

Here the norm on the left-hand side is the operator norm for bounded linear operator on \mathcal{H}.
8. (15 pts) Consider the following initial value problem for the heat equation in \mathbb{R}^{1+3} :

$$
\begin{gathered}
\frac{\partial u}{\partial t}-\Delta u=\mathcal{N}(u) ; \quad t>0, x \in \mathbb{R}^{3} \\
u(0, x)=f(x) \in \mathcal{S}\left(\mathbb{R}^{3}\right)
\end{gathered}
$$

Here $\mathcal{S}\left(\mathbb{R}^{3}\right)$ is the Schwartz class of functions on \mathbb{R}^{3}.
(1) If $\mathcal{N}(u) \equiv 0$, show that the unique solution $u=u(t, x)$ in $C\left([0, \infty) ; \mathcal{S}\left(\mathbb{R}^{3}\right)\right)$ satisfies

$$
\|u(t, \cdot)\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} \leq C(f)(1+t)^{-3 / 2}
$$

where $C(f)$ is a constant depending only on $f \in \mathcal{S}\left(\mathbb{R}^{3}\right)$.
(2) If $\mathcal{N}(u)=u^{4}$, show that there exists $\varepsilon_{0}>0$ such that for any $f \in \mathcal{S}\left(\mathbb{R}^{3}\right)$ with

$$
\sup _{\alpha, \beta \in \mathbb{N}^{3},|\alpha|+|\beta| \leq 1000} \sup _{x \in \mathbb{R}^{3}}\left|x^{\alpha} \partial^{\beta} f(x)\right| \leq \varepsilon_{0}
$$

there is a solution $u=u(t, x) \in C^{1}\left((0, \infty) ; H^{10}\left(\mathbb{R}^{3}\right)\right)$.

