
Select three out of four problems to work out. You must declare
which three you choose, otherwise the first three will be graded.

Classical Mechanics
Consider a point particle with mass m and negative total energy E = −|E|
moving in the following potential

V (r) = −α

r
+

β

r2
(α > 0, β ≥ 0). (1)

1. First prove that e⃗r = −de⃗ϕ
dϕ , where e⃗r is the unit vector along the radius

and e⃗ϕ the unit vector orthogonal to e⃗r in the direction of increasing ϕ
(see figure).
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When β = 0, also prove that

dv⃗

dϕ
= γ

de⃗ϕ
dϕ

, (2)

where v⃗ is the velocity of the particle. What is the constant γ?

2. Assuming β = 0, it follows from (2) that v⃗(t) = w⃗ + γe⃗ϕ(t) with constant
w⃗. By taking the scalar product of this equation with e⃗ϕ, show that the
orbit r(ϕ) is elliptical. (Hint: express vϕ ≡ v⃗(t) · e⃗ϕ(t) in terms of polar
coordinates. You may choose w⃗ along the y axis.)

3. On the other hand (still assuming β = 0), show that v⃗(ϕ) describes a
circle.

4. Now consider the case that β > 0. Derive the relation

1

2
mṙ2 + (

A

r
−B)2 = E2. (3)

What are A, B and E? Set
√

m
2 ṙ = E sin f(t) and (Ar − B) = E cos f(t).

Is this always possible?

5. Show that f(t)
ϕ = df

dϕ = ω = constant. Show that the orbits r(ϕ) are now
ellipses with precession (进动).
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Quantum Mechanics
Consider the spinless particle with charge e and mass m in a constant magnetic
field B directed along the z-axis

1. Let A⃗ be the vector potential corresponding to the magnetic field B. The
operator of particle velocity is

v⃗ =
1

m
(p⃗− e

c
A⃗). (4)

Write down the non-relativistic Hamiltonian describing this problem. (Hint:
H = T + V )

2. Establish the commutation relations for the spatial components of these
operators [vi, vj ] and for [vi, xj ], where xj are the coordinate operator.
Explain what these commutators imply about measurements of these ob-
servables of the system.

3. Write down the Schroedinger equation describing the problem and find
the energy spectrum (Landau levels). Write down the wave function of
the lowest energy level. Finally determine the degeneracy of this energy
level if the particle is confined in a rectangular region of area A = axay
perpendicular to the magnetic field.

4. Evaluate the commutator of the angular momentum component Lz and
velocity component vz. Is Lz conserved?

Thermodynamics
An external magnetic field B is applied to a set of N non-interacting spin- 12
particles with gyromagnetic ratio (i.e. the ration between magnetic moment and
angular momentum) γ, and fixed spatial positions. For the thermal equilibrium
at temperature T , calculate:

1. The average energy and heat capacity per particle.

2. The average magnetic moment of the system and the variance of its fluc-
tuations.

3. The entropy per particle.

4. Sketch the temperature dependence of the entropy, for both very large
and very small field magnitudes, and discuss (qualitatively) what would
happen with the entropy and the temperature of the system if it is first
thermally isolated from the environment, and then the applied field is
turned off gradually (you may assume this process is adiabatic and re-
versible in the first approximation).

5. Suggest a way to use this system as a refrigerator, assuming that its ther-
mal contacts with hot and cold heat baths, and the applied magnetic field,
may be controlled at will.
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Electrodynamics
Consider a point charge placed in an infinitely long grounded rectangular tube
as shown below. The sides of the square cross sectional area of the tube have
length a.

1. Show that the solutions to the homogeneous Laplace equation (i.e. without
the extra point charge) are linear combinations of functions of the form

Φ(kxz)Φ(kyy)e
±κzz, where Φ(u) = {cosu or sinu}. (5)

for specific values of kx, ky and κz. Determine the allowed the values of
kx, ky and κz and their associated functions.

2. Now consider a point charge q displaced from the center of the tube by
a distance b in the x direction, i.e. the coordinates of the charge are
r⃗o = (x, y, z) = (b, 0, 0) (qδ(x − b)δ(y)δ(z) on the right-hand-side of the
Poisson equation). Use the method of images to determine the potential.

3. As an alternative to the method of images, use a series expansion in terms
of the homogeneous solutions of part (1) to determine the potential from
the point charge described in part (2). (Hint: you may first show that for
a suitable normalization A

∑
n Xn(x)Xn(x0) = δ(x− xo).)

4. Determine the asymptotic form of the surface charge density, and the force
per area on the walls of the rectangular tube far from the point charge,
i.e. z ≫ a.

3


