Qualifying Exam 2025

August 29, 2025

All answers should be written in English. Clearly show your work.

Problem 1 (20 points)

Consider the following action for a system of a metric field $g_{\mu\nu}(x)$ and an electromagnetic field $A_{\mu}(x)$ in 3+1 dimensions:

$$\int d^4x \sqrt{-g} \Big(R - \frac{1}{4e^2} F^{\mu\nu} F_{\mu\nu} \Big).$$

- (a) From the above action, derive the equation of motion for $A_{\mu}(x)$.
- (b) From the above action, derive the stress tensor $T_{\mu\nu}$ for the electromagnetic field and show that it is conserved.
- (c) Derive the Einstein equation for the system by considering the variation $\delta g^{\mu\nu}$ of the inverse metric. (You may use $\delta\sqrt{-g}=-\frac{1}{2}\sqrt{-g}g_{\mu\nu}\delta g^{\mu\nu}$ and $\delta R_{\mu\nu}=\nabla_{\sigma}\delta\Gamma^{\sigma}_{\mu\nu}-\nabla_{\nu}\delta\Gamma^{\sigma}_{\mu\sigma}$).
- (d) Originally Einstein wrote an equation like $R_{\mu\nu} \propto T_{\mu\nu}$. Explain why this cannot be right. Also explain why the correct Einstein's equation makes sense.

Problem 2 (30 points)

Consider the Schwarzschild metric:

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \left(1 - \frac{2GM}{r}\right)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}).$$
 (1)

- (a) This is a black hole solution. Where is the horizon? How many Killing vectors does this solution have? Please write them down.
- (b) Show that a massless particle moving with $\dot{\theta} = 0$ can be reduced to a one-dimensional problem with an effective potential. Write down the effective potential in terms of the energy E and angular momentum L and r, and plot it.
- (c) What is the radius of the circular orbit? Is it stable?

Problem 3 (50 points)

Consider the ϕ^4 theory with Lagrangian:

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4.$$

(Here we use the Minkowski metric with signature (+, -, -, -).) Let us study the $2 \to 2$ scattering amplitude at the next-to-leading order $\mathcal{O}(\lambda^2)$.

- (a) Draw all the one-particle irreducible (1PI) Feynman diagrams that contribute to the $2 \to 2$ scattering amplitude at order $\mathcal{O}(\lambda^2)$. For each diagram, indicate whether it is (i) divergent or finite, and (ii) dependent on the external momenta or a constant.
- (b) Using the Feynman rules, write down the integral expression for the scattering amplitude $i\mathcal{M}(p_1p_2 \to p_3p_4)$ at order $\mathcal{O}(\lambda^2)$. Express your answer using the variables $s = (p_1 + p_2)^2$, $t = (p_1 p_3)^2$ and $u(p_1 p_4)^2$, where p_1 , p_2 are incoming external momenta and p_3 , p_4 are outgoing external momenta.
- (c) The divergent part of the amplitude is most clearly isolated using dimensional regularization $(d = 4 \epsilon)$. The divergent piece is a constant, independent of the external momenta. Calculate this constant at order $\mathcal{O}(\lambda^2)$.
- (d) The total $\mathcal{O}(\lambda^2)$ amplitude must be made finite through renormalization. This requires introducing a counterterm $\delta \mathcal{L}$ from the renormalization of the coupling constant λ . Write down the relevant counterterm Lagrangian $\delta \mathcal{L}_{\lambda}$ needed to cancel the divergences found in the 1-loop

amplitude. Draw the corresponding Feynman diagram for this counterterm and write its contribution to $i\mathcal{M}$.

(e) After renormalization, the physical, finite coupling constant λ_{phys} is defined at a specific renormalization scale μ^2 . Briefly explain the purpose of this scale and how it appears in the renormalized amplitude.

You may find the following equations useful:

$$(AB)^{-1} = \int_0^1 dx \left[xA + (1-x)B \right]^{-2},$$

$$\int d^dk \, \frac{1}{(-k^2-2p\cdot k-M^2+i\epsilon)^s} = (-1)^s \, i\pi^{d/2} \, \frac{\Gamma(s-d/2)}{\Gamma(s)} \, (-p^2+M^2-i\epsilon)^{d/2-s},$$

Here $\Gamma(z)$ is the Gamma function with a pole at z=0:

$$\Gamma(z) = \frac{1}{z} + \gamma + O(z),$$

with γ being the Euler constant.