清华大学考试试题专用纸

考试课程： \qquad姓名： \qquad学号： \qquad

Problems：

1．（10 pts）On a Riemannian manifold (M, g) ，suppose that f is a smooth function such that $|\operatorname{grad} f|=1$ ．Show that the integral curves of $\operatorname{grad} f$ are geodesics．

2．（10 pts）Let M be the quotient space

$$
\left([0,1] \times \mathbb{C P}^{2}\right) /\left(0,\left[z_{0}, z_{1}, z_{2}\right]\right) \sim\left(1,\left[\bar{z}_{0}, \bar{z}_{1}, \bar{z}_{2}\right]\right) .
$$

Compute the homology group $H_{k}(M ; \mathbb{Z})$ for all $k \geq 0$ ．
3．（10 pts）Consider a map $f: \mathbb{T}^{2} \rightarrow \mathbb{R P}^{2}$ from the torus to the projective plane．Suppose the induced map $f_{*}: \pi_{1}\left(\mathbb{T}^{2}\right) \rightarrow \pi_{1}\left(\mathbb{R P}^{2}\right)$ is trivial．Is f always null－homotopic？Prove your conclusion．

4．（10 pts）Let $F:(M, g) \rightarrow(M, g)$ be an isometry that fixes $p \in M$ ．Show that $d F_{p}=-\mathrm{id}$ on $T_{p} M$ if and only if $F^{2}=\mathrm{id}_{M}$ and p is an isolated fixed point．

5．（15 pts）Let M be a closed smooth manifold．Show that M is a smooth fiber bundle over S^{1} if and only if there exists a closed，nowhere vanishing differential 1－form on M ．（A differential form α is nowhere vanishing if for any $x \in M$ ，there exists $v \in T_{x} M$ such that $\alpha(v) \neq 0$ ．）

6．（15 pts）Consider an Einstein metric $\left(N^{n-1}, g_{N}\right)$ with Ric $=\frac{n-2}{n-1} \lambda g_{N}, \lambda<0$ ．Find a

$$
\rho: \mathbb{R} \rightarrow(0, \infty)
$$

such that $\left(M^{n}, g\right)=\left(\mathbb{R} \times N, d r^{2}+\rho^{2}(r) g_{N}\right)$ becomes an Einstein metric with Ric $=\lambda g$ ．
7．（ 15 pts ）（1）Let M be a compact，orientable $(2 n+1)$－dimensional manifold with boundary N ． Consider the map

$$
i^{*}: H^{n}(M ; \mathbb{R}) \rightarrow H^{n}(N ; \mathbb{R})
$$

induced by the inclusion $i: N \rightarrow M$ ．Show that

$$
\text { dimension of the image of } i^{*}=\frac{1}{2} \text { dimension of } H^{n}(N ; \mathbb{R}) \text {. }
$$

（2）Show that for any $n \geq 1, \#_{n} \mathbb{C P}^{2}$ is not the boundary of a compact，orientable 5 －dimensional topological manifold．Here $\#_{n} \mathbb{C P}^{2}$ denotes the connected sum of n copies of complex projective space $\mathbb{C P}^{2}$ ．

8．（ 15 pts ）Suppose (M, g) is a Riemannian manifold．There is a unique bundle endomorphism

$$
\mathcal{R}: \wedge^{2} T M \rightarrow \wedge^{2} T M
$$

called the curvature operator of g ，that satisfies

$$
g(\mathcal{R}(W \wedge X), Y \wedge Z)=-R(W, X, Y, Z)
$$

for all tangent vectors W, X, Y, Z at a point of M ．A Riemannian metric is said to have positive curvature operator if \mathcal{R} is positive definite．
（a）Show that positive curvature operator implies positive sectional curvature．
（b）Let g be the Fubini－Study metric on $\mathbb{C P}^{2}$ ．Do it have positive sectional curvature？Does g have positive curvature operator？Give details to justify your conclusions．

