清华大学考试试题专用纸

考试课程 Subject:	求真书院代数博士生资格考 Algebra qualify exam for Qiuzhen Colledge
	姓名 Name:
	学号 Student ID:

- 考试时间: 2024 年 2 月 Exam Time: 2024.02
- 本试卷共 3 页, 9 道大题, 总分为 100 分. This exam has 3 pages, 9 problems, 100 points.
- 考生默认遵守考试纪律, 不遵守者后果自负. Candidates are expected to adhere to the examination discipline by default, and those who do not comply will bear the consequences themselves.
- 所有的解答请写出必要的细节, 推理依据和推理过程. All answers must include necessary details, reasoning basis, and the process of reasoning.

以下题目中 ${\bf Q}$ 是有理数域, ${\bf R}$ 指实数域, ${\bf C}$ 指复数域, ${\bf Z}$ 指整数全体, F_q 有 q 个元素的有限域. **在题目中环均指含幺交换环**.

In the following problems, \mathbf{Q} is field of rational numbers, \mathbf{R} is field of real numbers, \mathbf{C} is field of complex numbers, \mathbf{Z} is ring of integers, F_q is finite field consisting of q elements. In all the problems, ring means commutative ring with multiplicative unit.

- 题 1 (10 points). 假设 V 是有限维复线性空间, 给定 $T: V \to V$ 是线性变换. 证明
 - 1. 存在可对角化的线性变换 $D: V \to V$ 和幂零线性变换 $N: V \to V$,使得 T = D + N,并且 DN = ND.
 - 2. 这样的 D 和 N 被 T 唯一确定.

Let V be a finite dimensional complex vector space. Given a linear transformation $T\colon V\to V$, prove

- 1. There exists diagonalizable linear transformation $D: V \to V$ and nilpotent transformation $N: V \to V$, such that T = D + N, and DN = ND.
- 2. Such D and N are uniquely determined by T.
- 题 2 (10 points). 假设 A 和 B 是 n 阶正定实对称方阵, 证明 det(A+B) > det(A).

Let A and B be positive definite real symmetric matrices of order n, prove that det(A + B) > det(A).

题 $\mathbf{3}$ (10 points). 假设 G 为取定的 n 阶有限交换群. 求有多少不同的从 G 到 \mathbf{R}/\mathbf{Z} 的群同态?证明你的结论.

Let G be a fixed finite abelian group of order n. How many distinct group homomorphisms are there from G to \mathbf{R}/\mathbf{Z} ? Prove your conclusion.

题 4 (10 points). 假设 D_{2n} 是阶数为 4n 的二面体群. 写下 D_{2n} 的不可约复表示的特征标表.

Let D_{2n} be dihedral group of order 4n. Write down the character table of irreducible complex representations of D_{2n} .

- 题 5 (10 points). 假设 p 是素数, 域 $F = F_p(x,y)$, $\alpha \in F$. 令 K 是 $x^p x \alpha$ 在 F 上的分裂域.
 - 1. 证明 K/F 是 Galois 扩张.
 - 2. 求所有可能的 Galois 群 Gal(K/F).

Let p be a prime number and field $F = F_p(x,y)$, $\alpha \in F$. Assume K is the splitting field of $x^p - x - \alpha$ over F.

- 1. Prove that K/F is Galois extension.
- 2. Find all the possible Galois group Gal(K/F).

题 6 (10 points). 假设 R 是整环, Aut R 是 R 的环自同构群. 对 Aut R 的有限子群 G, 定义

$$R^G = \{ r \in R | q(r) = r, \forall q \in G \}.$$

- 1. 证明 R 在 R^G 上整.
- 2. 证明如果对 $\operatorname{Aut} R$ 的有限子群 G 和 H 有 $R^G = R^H$, 则 G = H.

Let R be an integral domain, Aut R the ring automorphism group of R. For finite subgroup G of Aut R, define

$$R^G = \{ r \in R | g(r) = r, \forall g \in G \}.$$

- 1. Prove that R is integral over R^G .
- 2. Prove that for finite subgroups G and H of Aut R, if $R^G = R^H$, then G = H.

题 7 (10 points). 假设 A 和 B 都是域 k 上的有限生成代数,且有环同态 $f: A \to B$ 使得 f 限制 在 k 上是恒等映射. 对任意 B 中的极大理想 m, 证明 $f^{-1}(m)$ 是 A 的极大理想.

Let k be a field, A and B be finitely generated k-algebra, and $f: A \to B$ be a ring homomorphism such that the restriction of f on k is identity. Prove that for any maximal ideal m of B, the inverse image $f^{-1}(m)$ is a maximal ideal of A.

题 8 (15 points). 令 W 是 2×2 的迹零实矩阵组成的实线性空间, $W = \{A \in M_{2 \times 2}(\mathbf{R}) | trace(A) = 0\}$.

1. 求 W 上的对称双线性型 $\langle A, A' \rangle = \operatorname{trace}(AA')$ 的符号

- 2. 证明 $P \star A = PAP^{-1}$ 定义了 $SL(2, \mathbf{R})$ 在 W 上的线性作用.
- 3. 利用这个作用定义群同态 φ : $SL(2, \mathbf{R}) \to O_{2,1}$. 其中 $O_{2,1}$ 是保持符号为 (2,1) 的实对称双线性的线性变换群.
- 4. 找到这个同态的核.

Let W be the real vector space of real trace-zero 2×2 matrices $W = \{A \in M_{2 \times 2}(\mathbf{R}) | trace(A) = 0\}$.

- 1. Find the signature of the symmetric bilinear form defined by $\langle A, A' \rangle = \operatorname{trace}(AA')$.
- 2. Prove that $P \star A = PAP^{-1}$ defines a linear group operation of $SL(2, \mathbf{R})$ on the space W.
- 3. Use this operation to define a group homomorphism $\varphi \colon \mathrm{SL}(2,\mathbf{R}) \to O_{2,1}$. Here $O_{2,1}$ is the group of linear transformations preserving real symmetric bilinear form of signature (2,1).
- 4. Find the kernel of this homomorphism.

题 9 (15 points). 假设 p 是一个素数, $q=p^n$ 是素数幂. 考虑有限域 F_q 上的 2×2 的可逆矩阵组成的有限群 $\mathrm{GL}(2,F_q)$. 求

- 1. $GL(2, F_q)$ 中的共轭类的个数.
- 2. 每个共轭类中的元素个数.

Let p be a prime number and $q = p^n$ a power of p. Consider the group $GL(2, F_q)$ consisting of 2×2 invertible matrices over finite field F_q . Find

- 1. The number of conjugacy classes in $GL(2, F_q)$.
- 2. The number of elements in each conjugacy class.