清华大学考试试题专用纸

考试课程 Subject:	求真书院代数博士生资格考 Algebra qualify exam for Qiuzhen College
	姓名 Name:
	学号 Student ID:

- 考试时间: 2025 年 2 月 Exam Time: 2025.02
- 本试卷共 4 页, 基础题 6 道, 高等题 6 道选 2 道, 总分为 100 分。This exam has 4 pages, 6 basic problems, 2 out of 6 advanced problems, 100 points.
- 考生默认遵守考试纪律, 不遵守者后果自负。Candidates are expected to adhere to the examination discipline by default, and those who do not comply will bear the consequences themselves.
- 所有的解答请写出必要的细节, 推理依据和推理过程。All answers must include necessary details, reasoning basis, and the process of reasoning.

以下题目中 ${\bf Q}$ 指有理数域, ${\bf R}$ 指实数域, ${\bf C}$ 指复数域, ${\bf Z}$ 指整数全体, ${\bf F}_q$ 是有 q 个元素的有限域。**在题目中环均指含幺交换环**。

In the following problems, \mathbf{Q} is the field of rational numbers, \mathbf{R} is the field of real numbers, \mathbf{C} is the field of complex numbers, \mathbf{Z} is the ring of integers, \mathbf{F}_q is the finite field consisting of q elements. In all the problems, ring means commutative ring with multiplicative unit.

1 基础题 Basic Questions

题 $\mathbf{1}$ (10 points). 设 V 是一个有限维复线性空间, T 是 V 上的一个线性算子。假设 T 的极小多项式和特征多项式相等。证明 T 只有有限多个不变子空间。

Let V be a complex vector space of finite dimension and T a linear operator on V. Suppose the minimal polynomial of T agrees with the characteristic polynomial. Show that T only has finitely many invariant subspaces.

题 2 (10 points). 记 D_{2n} 为阶数为 2n 的二面体群。证明 A_6 中任意一个 Sylow 5-子群的正规化子均同构于 D_{10} 。

Denote by D_{2n} the dihedral group of order 2n. Prove that the normalizer of any Sylow 5-subgroup of A_6 is isomorphic to D_{10} .

题 3 (10 points). 1. $\mathbf{Q}(\sqrt{1+\sqrt{2}})/\mathbf{Q}$ 是否为伽罗瓦扩张?

- 2. 确定 $\mathbf{Q}(\sqrt{1+\sqrt{2}})$ 的域自同构群 $\mathrm{Aut}(\mathbf{Q}(\sqrt{1+\sqrt{2}}))$ 。
- 1. Is $\mathbf{Q}(\sqrt{1+\sqrt{2}})/\mathbf{Q}$ a Galois extension?
- 2. Determine $\operatorname{Aut}(\mathbf{Q}(\sqrt{1+\sqrt{2}}))$, i.e., the automorphism group of $\mathbf{Q}(\sqrt{1+\sqrt{2}})$.
- 题 4 (10 points). 1. 设 R 是一个主理想整环, K 是 R 的分式域。设 R' 是 K 的一个子环且包含 R。证明 R' 是主理想整环。
 - 2. 设 R_1 和 R_2 是交换环。证明 $R_1 \times R_2$ 的理想均可写成 $I_1 \times I_2$,其中 I_1 和 I_2 分别是 R_1 和 R_2 的理想。
 - 1. Let R be a principal ideal domain with fraction field K. Let R' be a subring of K that contains R. Show that R' is a principal ideal domain.
 - 2. Let R_1 and R_2 be commutative rings. Show that the ideals of $R_1 \times R_2$ are all of the form $I_1 \times I_2$, where I_1 and I_2 are ideals of R_1 and R_2 , respectively.
- 题 5 (10 points). 设 R 是一个交换环,M 是一个诺特 R-模, $I = \{x \in R \mid xM = 0\}$ 是 M 的零化理想。证明 R/I 是一个诺特环。

Let M be a Noetherian R-module and I the annihilator of M. Show that R/I is Noetherian.

- 题 6 (20 points). $\mathfrak{sl}(n, \mathbb{C})$ 是 $n \times n$ 的迹为 0 的复矩阵构成的李代数。
 - 1. 计算 $\mathfrak{sl}(n, \mathbb{C})$ 的 Killing 型。
 - 2. 以下是 Weyl 的分母公式,

$$\sum_{w \in W} (-1)^{\ell(w)} e^{w(\rho)} = \prod_{\alpha \in R^+} (e^{\alpha/2} - e^{-\alpha/2}),$$

其中, R^+ 是所有的正根集合, ρ 是二分之一正根和。对 $\mathfrak{sl}(n, \mathbb{C})$ 证明这个公式。

Let $\mathfrak{sl}(n, \mathbf{C})$ be the Lie algebra of $n \times n$ traceless matrices over \mathbf{C} .

- 1. Compute the Killing form for $\mathfrak{sl}(n, \mathbf{C})$.
- 2. Recall the Weyl denominator formula

$$\sum_{w \in W} (-1)^{\ell(w)} e^{w(\rho)} = \prod_{\alpha \in R^+} (e^{\alpha/2} - e^{-\alpha/2}),$$

where R^+ denotes the positive roots and ρ is the half sum of the positive roots. Prove this formula for $\mathfrak{sl}(n, \mathbf{C})$.

2 高等题 Advanced Questions

(在答卷纸首页圈出要批改的两题。Circle the two questions to be graded on the front page of the answer sheet.)

题 7 (15 points). 设 k 为特征 p>0 的域,令 K=k(x,y) 为 k 上两个变量的有理函数域,且令 $F=k(x^p,y^p)$ 。

- 1. 证明 $[K:F] = p^2$ 。
- 2. 证明 $K^p \subseteq F$ 。
- 3. 证明 K/F 存在无穷多个中间域。

Let k be a field of characteristic p > 0, let K = k(x, y) be the rational function field over k in two variables, and let $F = k(x^p, y^p)$.

- 1. Prove that $[K : F] = p^2$.
- 2. Prove that $K^p \subseteq F$.
- 3. Prove that there are infinitely many intermediate fields of K/F.

题 8 (15 points). 设 $K \to f(x) = x^7 - 7$ 在 \mathbf{F}_5 上的分裂域。

- 1. 确定 $Gal(K/\mathbf{F}_5)$ 。
- 2. 找出 K/\mathbf{F}_5 所有的中间域。
- 3. 将 f(x) 分解为不可约多项式的乘积。

Let K be the splitting field of $f(x) = x^7 - 7$ over \mathbf{F}_5 .

- 1. Determine $Gal(K/\mathbf{F}_5)$.
- 2. Find all the intermediate fields of K/\mathbf{F}_5 .
- 3. Factorize f(x) into irreducible polynomials.
- 题 9 (15 points). 1. 设 R 是一个整闭整环, K 是 R 的分式域, L 是 K 的一个代数扩张。证明 若 L 中的元素 x 在 R 上是整的,则它在 K 上的极小多项式属于 R[t]。
 - 2. 设 $R = \mathbf{C}[t_1, ..., t_n]$ 是多元多项式环, $f \in R$ 是一个无平方因子的多项式。设 $B = R[s]/(s^2 f)$. 证明 B 是整闭的。
 - 1. Let R be an integrally closed domain with fraction field K. Let L be an algebraic extension of K. Show that if $x \in L$ is integral over R then its minimal polynomial over K is in R[t].

- 2. Let $R = \mathbf{C}[t_1, \ldots, t_n]$ and $f \in R$ be a square-free polynomial. Let $B = R[s]/(s^2 f)$. Show that B is an integrally closed domain.
- 题 10 (15 points). 设 R 是一个交换环, I 是 R 的一个有限生成理想, 且满足 $I^2 = I$ 。
 - 1. 证明存在唯一的 $e \in R$ 使得 I 由 e 生成, 且 $e^2 = e$ 。
 - 2. 假设 $I \neq 0$, R。证明 R 是两个环的直积。
 - 3. 求环 $\mathbf{C}[x]/x(x-1)(x-2)$ 的所有满足 $J^2=J$ 的理想 J 的个数。

Let R be a commutative ring, I be a finitely generated ideal of R such that $I^2 = I$.

- 1. Show that I it is generated by a unique element e such that $e^2 = e$.
- 2. Suppose $I \neq 0, R$. Show that R is a product of two rings.
- 3. Find the number of all ideals J of $\mathbb{C}[x]/x(x-1)(x-2)$ such that $J^2=J$.
- 题 11 (15 points). 令 S_n 为 n 个字母的对称群。构造对称群 S_3 和 S_4 的所有不可约复表示,并且计算它们的特征表。

Let S_n be the symmetric group of n letters. Construct all the complex irreducible representations for the symmetric groups S_3 and S_4 , and calculate their character tables.

- 题 12 (15 points). 设 A, B 为交换环。
 - 1. 假设 B 是一个平坦 A-代数。设 $\mathfrak{a}_1,\mathfrak{a}_2$ 为 A 中的理想,证明 $\mathfrak{a}_1B\cap\mathfrak{a}_2B=(\mathfrak{a}_1\cap\mathfrak{a}_2)B$ 。
 - 2. 设 k 为一个域, A = k[x,y] 且 B = A[z]/(xz-y)。证明 B 不是一个平坦 A-代数。

Let A, B be commutative rings.

- 1. Suppose B is a flat A-algebra. Let $\mathfrak{a}_1, \mathfrak{a}_2$ be ideals of A, show that $\mathfrak{a}_1B \cap \mathfrak{a}_2B = (\mathfrak{a}_1 \cap \mathfrak{a}_2)B$.
- 2. Let k be a field, A = k[x, y] and B = A[z]/(xz y). Show that B is not a flat A-algebra.