Qiuzhen College PhD Entrance Exam

Name: St	tudent ID:
----------	------------

• Exam Time: 2025 Spring

- This exam consists of 3 pages, 6 problems. The full score is 100 points.
- Examinees are expected to adhere to the examination discipline by default. Those who fail to abide by it shall bear the consequences themselves.
- All solutions should include necessary details, the basis of reasoning, and the reasoning process. When citing a theorem or conclusion, it is advisable to cite its original version as much as possible instead of an uncommon variant. If the question requires proving a theorem or conclusion itself, one cannot simply state its name without providing a proof.

In the following problems, \mathbf{Q} is the field of rational numbers, \mathbf{R} is the field of real numbers, \mathbf{C} is the field of complex numbers, \mathbf{Z} is the ring of integers. For any matrix A, we denote by A^T the transpose of A.

- 1. (10 points) Let $V = M_n(\mathbf{R})$ be the vector space of $n \times n$ matrices over \mathbf{R} .
 - (a) Let W_1 be the subspace of V consisting of symmetric matrices, and W_2 the subspace of V consisting of skew-symmetric matrices. Show that $V = W_1 \oplus W_2$.
 - (b) Let \mathcal{B} be the bilinear form on V defined by $\mathcal{B}(A, B) = \operatorname{tr}(AB)$, where tr is the trace of a matrix. Determine the signature (p, q) of \mathcal{B} (i.e.: p and q are, respectively, the number of positive and negative elements in the diagonalization of \mathcal{B}).
- 2. (10 points) Let α and β be two nonzero column vectors in \mathbf{R}^n and A be an $n \times n$ matrix defined by $A = \alpha \beta^T$. The standard inner product on \mathbf{R}^n is defined by $\langle x, y \rangle = x^T y$ for $x, y \in \mathbf{R}^n$.
 - (a) If $\langle \alpha, \beta \rangle = 0$, is A always diagonalizable over **R**?
 - (b) If $\langle \alpha, \beta \rangle \neq 0$, is A always diagonalizable over **R**?

Prove your statements.

- 3. (15 points) Suppose $f:[a,b]\to \mathbf{R}$ is a smooth function.
 - (a) Take n distinct points ξ_1, \dots, ξ_n on [a, b]. Prove that there exists a unique polynomial L with degree no larger than n-1, such that for any $x \in [a, b]$ there exists $\xi \in [a, b]$ satisfying

$$f(x) - L(x) = \frac{\prod_{i=1}^{n} (x - \xi_i)}{n!} f^{(n)}(\xi).$$

(b) Now set $\xi_i = \frac{b+a}{2} + \frac{b-a}{2}\theta_i$ for some $\theta_i \in [-1,1]$, $i = 1, 2, \dots, n$. Prove that the polynomial L above satisfies

$$\int_{a}^{b} L(x)dx = \frac{b-a}{2} \cdot \sum_{i=1}^{n} c_{i} f(\xi_{i}), \quad c_{i} = \int_{-1}^{1} \prod_{j \neq i} \frac{t-\theta_{j}}{\theta_{i} - \theta_{j}} dt.$$

4. (5 points) Compute the integral

$$f(x) = \int_{-\infty}^{+\infty} \frac{\cos x}{x^4 + 1} dx.$$

5. (30 points)

Consider a one-dimensional quantum mechanical system of a particle of mass m moving along the x-axis in a harmonic oscillator potential $m\omega^2x^2/2$, where ω is a positive real number. Neglect relativistic effects.

(a) Express the Hamiltonian in terms of the dimensionless variable

$$\eta = \sqrt{\frac{m\omega}{\hbar}}x. \tag{1}$$

and the ladder operators

$$\hat{a} = \frac{1}{\sqrt{2}} \left(\eta + \frac{d}{d\eta} \right), \quad \hat{a}^{\dagger} = \frac{1}{\sqrt{2}} \left(\eta - \frac{d}{d\eta} \right).$$
 (2)

Furthermore, derive the commutation relation between \hat{a} and \hat{a}^{\dagger} .

- (b) Express the position operator \hat{x} and the momentum operator \hat{p} using the ladder operators.
- (c) Let $|0\rangle$ be the normalized ground state of the harmonic oscillator. Show that a normalized state $|n\rangle = c_n(\hat{a}^{\dagger})^n|0\rangle$ is an eigenstate of the number operator $\hat{N} = \hat{a}^{\dagger}\hat{a}$ with eigenvalue n, and determine the (positive real) normalization factor c_n .
- (d) The variance of an operator is the expectation value of the operator squared minus the expectation value squared of the operator. Calculate the variances of \hat{x} and \hat{p} in the state $|n\rangle$ and derive an uncertainty relation.
- (e) Consider the eigenvalue equation for the annihilation operator:

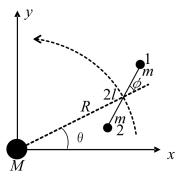
$$\hat{a}|\Phi\rangle = R|\Phi\rangle. \tag{3}$$

For simplicity, assume R is real. Calculate the variances of \hat{x} and \hat{p} in the state $|\Phi\rangle$, and compare the result with the uncertainty relation obtained above.

- (f) Using the explicit form of \hat{a} , solve the differential equation to find the wavefunction $\langle x|\Phi\rangle$.
- (g) In the Heisenberg picture, find the time dependence of \hat{a} and \hat{a}^{\dagger} .
- (h) Using the time dependence of \hat{a} and \hat{a}^{\dagger} obtained above and the expression of \hat{x} in terms of \hat{a} and \hat{a}^{\dagger} , calculate the expectation value $\langle \Phi | \hat{x}(t) | \Phi \rangle$ of the position operator $\hat{x}(t)$ in the Heisenberg picture. Furthermore, discuss the time dependence of the variance of $\hat{x}(t)$ in the state $|\Phi\rangle$.

6. (30 points)

Two point particles of mass m are connected by a massless rod of length 2l and move in a plane, as shown in the picture below. A point particle of mass M ("Earth") is fixed at the origin and exerts gravitational force (with Gravitational constant G) on this two-particle system.



- (a) Take coordinates as shown in the picture. The xy-coordinates of the center of the rod is $(R\cos\theta, R\sin\theta)$. Relative to the center of the rod, particle 1 is located at $(l\cos(\theta + \phi), l\sin(\theta + \phi))$ and particle 2 is located at $(-l\cos(\theta + \phi), -l\sin(\theta + \phi))$. Express the kinetic energy of the system in terms of (R, θ, ϕ) and their time derivatives.
- (b) Express the distances r_1 , r_2 to particles 1 and 2 in terms of R, l, ϕ , and write down the Lagrangian of the two-particle system.
- (c) Consider the limit $l \to 0$. Derive the Euler–Lagrange equation with respect to R. If this two-particle system is orbiting around Earth at a constant radius $R = R_0$, then its angular velocity $\dot{\theta} = \omega_0$ is a constant. Find ω_0 .
- (d) Suppose $l \ll R$ and consider the situation where we can approximate $R = R_0$ (constant) and $\dot{\theta} = \omega_0$ (constant). Write down the Euler–Lagrange equation with respect to ϕ , expand it using the approximation $(1+x)^{-\alpha} \approx 1 \alpha x$ for $|x| \ll 1$. Finally, show that if ϕ is small, then ϕ undergoes a simple harmonic oscillation around $\phi = 0$. What is the frequency of this oscillation?