清华大学考试试题专用纸

考试课程: _____ 姓名: _____ 学号: _____

表	1:	h	以	下	6	题中	勾选	出	4	题
---	----	---	---	---	---	----	----	---	---	---

5	6	7	8	9	10

必做题

1. (5 points+5 points) Let a, b denote the two standard generators of $\pi_1(X) \cong F_2$.

(a) Draw a picture of the directed graph of the covering space of X that corresponds to the following subgroup

$$H = \langle a^2, b^2, ab^2a, ba^2b, (ab)^2 \rangle$$

On each edge of the directed graph, you should draw an arrow for its direction and label "a" or "b" for its image under the covering map.

- (b) Is the covering above a normal covering? Prove your claim.
- 2. (10 points) Let $M \subset \mathbb{R}^n$ be a smooth submanifold of dimension m < n-2. Prove that the complement $\mathbb{R}^n \setminus M$ is connected and simply-connected.
- 3. (10 pts) Let (M, g) be a complete Riemannian manifold. Is every Killing vector field X on M complete?
- 4. (10pts) Let M be an oriented Riemannian 4-manifold. A 2-form ω on M is said to be **self-dual** if $*\omega = \omega$, and **anti-self-dual** if $*\omega = -\omega$.
 - (a) Show that every 2-form ω on M can be written uniquely as a sum of a self-dual form and an anti-self-dual form.
 - (b) On $M = \mathbb{R}^4$ with the Euclidean metric, determine the self-dual and anti-self-dual forms in standard coordinates.

第1页,共2页

- 5. (15 pts) Classify all 2024-dimensional complete Riemannian manifolds with constant sectional curvature K = 1.
- 6. (15 points) Let M be a 2-dimensional manifold without boundary such that $\pi_1(M)$ is an infinite group. (M is **not** necessarily compact.) Compute $\pi_n(M)$ for all $n \ge 2$. Prove your claim.
- 7. (15 pts) Compute the Ricci curvature and scalar of $\left(\mathbb{R}^2, g = e^{-\pi(x^2+y^2)}(dx \otimes dx + dy \otimes dy)\right)$. Is $\left(\mathbb{R}^2, g = e^{-\pi(x^2+y^2)}(dx \otimes dx + dy \otimes dy)\right)$ a complete Riemannian manifold? Prove your claim.
- 8. (10 points +5 points) Let M, N be closed, connected, orientable manifolds of the same dimension n. Suppose that $f: M \to N$ induces a nonzero map

$$f_*: H_n(M; \mathbb{Z}) \to H_n(N; \mathbb{Z}).$$

Are the following statements true? If true, give a proof; if false, give a counter-example and prove that the example you give is indeed a counter-example.

- (a) $\dim_{\mathbb{Q}} H_k(M; \mathbb{Q}) \ge \dim_{\mathbb{Q}} H_k(N; \mathbb{Q})$ for all k.
- (b) $\operatorname{rank} H_k(M; \mathbb{Z}) \ge \operatorname{rank} H_k(N; \mathbb{Z})$ for all k. (Here, the rank of a group is defined to be the minimal number of generators. By this definition, $\operatorname{rank}(\mathbb{Z} \oplus \mathbb{Z}/2) = 2$.)
- 9. (15 pts) Can $M = \mathbb{S}^1 \times \mathbb{S}^2$ admit a smooth Riemannian metric g with $\operatorname{Ric}(g) = f \cdot g$ for some smooth function f on M? Prove your claim.
- 10. (15 points) Prove that $\mathbb{RP}^n \times \mathbb{S}^2$ does not have an open cover consisting of k contractible open subsets if $k \leq n+1$.

第2页,共2页