
QIUZHEN QUALIFY EXAM FOR ARTIFICIAL INTELLIGENCE

FALL 2025

Instructions

• This exam consists of four sections, each with a total of 33 points. You are
required to choose three out of the four sections and answer the questions
in the selected sections. You will earn an additional point for writing your
name and student ID number on your answer sheet. The maximum possible
score you can achieve is 100.

• Please clearly indicate your section choices at the very beginning of your
answer sheet. If you answer questions in more than three sections, only the
first three sections will be graded.

A. Machine Learning Theory

Part I: Warm-Up Questions [5 pts. + 1 bonus pts.]
This section contains multiple-choice questions. Please select only one answer for each

question. No justification is required.

1. [0.5 pts.] Which of the following best describes the bias–variance tradeoff?
(a) Increasing model bias reduces variance but increases approximation error
(b) Increasing model bias reduces both bias and variance
(c) Variance is always independent of bias
(d) The tradeoff only applies to neural networks

2. [0.5 pts.] Why does the ‘No Free Lunch’ theorem matter in machine learning?
(a) Every algorithm performs optimally on all data sets
(b) All learning tasks require exponential time
(c) There is no universally superior learning algorithm across all tasks
(d) Only smooth loss functions can be optimised

3. [0.5 pts.] Which of the following is true about Rademacher complexity?
(a) It measures how well a hypothesis class fits random labels
(b) It always equals the VC dimension
(c) It decreases with model complexity
(d) It is independent of sample size

4. [0.5 pts.] In Empirical Risk Minimisation (ERM), what is being minimised?
(a) The true risk on unseen data
(b) The average loss on the training sample
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(c) The VC dimension of the hypothesis class
(d) The variance of the hypothesis

5. [1 pts.] Which statement is true about the VC dimension?
(a) A class with infinite VC dimension can never be PAC learnable
(b) The VC dimension of halfspaces in Rd is exactly d+ 1
(c) VC dimension always equals the number of parameters of the hypothesis class
(d) Finite VC dimension implies zero generalisation error

6. [1 pts.] In the agnostic PAC learning model, what changes compared to the realisable
PAC model?
(a) The learner must always find a hypothesis with zero training error
(b) The hypothesis class must contain the true labelling function
(c) The goal is to compete with the best hypothesis in the class, even if labels are

noisy
(d) The sample complexity becomes independent of ε

7. [1 pts.] In stochastic gradient descent (SGD), why does using a decreasing learning
rate help?
(a) It avoids overfitting completely
(b) It ensures convergence under certain convexity assumptions
(c) It increases variance in gradient estimates
(d) It eliminates the need for backpropagation

8. [Optional: 1-Points Bonus!] What does Sauer’s Lemma imply about a hypoth-
esis class H with VC-dimension d?
(a) H can shatter any set of size larger than d
(b) The growth function τH(m) is bounded polynomially in m once m > d
(c) The empirical risk minimiser achieves zero risk for m ≤ d
(d) The sample complexity is independent of d

Part II: Theoretical Exercises [28 pts.]
This is the main part of the exam. Provide detailed solutions and reasoning for each

question. Full marks are awarded only for complete and well-explained answers.

9. [5 pts.] Let H be the class of signed intervals, that is,

H = {ha,b,s : a ≤ b, s ∈ {−1, 1}},
where

ha,b,s(x) =

{
s if x ∈ [a, b]

−s if x /∈ [a, b]
.

Calculate VCdim(H).

10. [6 pts.] Lemma – show it holds. Strong Convexity Properties. Show the
following holds.

Let f : Rd → R. Then:
(a) The function f(w) = λ‖w‖2 is 2λ-strongly convex.
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(b) If f is λ-strongly convex and g is convex, then f + g is λ-strongly convex.
(c) If f is λ-strongly convex and u is a minimiser of f , then for any w,

f(w)− f(u) >
λ

2
‖w − u‖2.

11. [5 pts.] Let X = R2, Y = {0, 1}, and let H be the class of concentric circles in the
plane, that is,

H = {hr : r ∈ R+}, where hr(x) = 1{‖x‖≤r}.

Prove that H is PAC learnable (assume realisability), and its sample complexity
is bounded by

mH(ε, δ) ≤ log(1/δ)

ε
.

12. [7 pts.] We initialise w1 ∈ W. At round t = 1, 2, . . . , we obtain a random estimate
ĝt of a subgradient gt ∈ ∂F (wt) so that E[ĝt] = gt, and update the iterate wt as
follows:

wt+1 = ΠW(wt − ηtĝt),

where ηt is a suitably chosen step-size parameter, and ΠW denotes projection onW.
Assume F is λ -strongly convex, and that

E
[
‖gt‖2

]
≤ G2

for all t. Consider Stochastic Gradient Descent with step sizes ηt = 1
λt .

Show that for any w ∈W , the following inequality holds:
E
[
‖wt+1 − w‖2

]
≤ E

[
‖wt − w‖2

]
− 2ηtE [〈gt, wt − w〉] + η2

tG
2.

13. [5 pts.] Neural Networks are universal approximators: Let f : [−1, 1]n →
[−1, 1] be a ρ-Lipschitz function. Fix some ε > 0. Construct a neural network
N : [−1, 1]n → [−1, 1], with the sigmoid activation function, such that for every
x ∈ [−1, 1]n it holds that

|f(x)−N(x)| ≤ ε.

Hint: Partition [−1, 1]n into small boxes. Use the Lipschitzness of f to show that
it is approximately constant at each box. Finally, show that a neural network can
first decide which box the input vector belongs to, and then predict the averaged
value of f at that box.



4 QIUZHEN QUALIFY EXAM FOR ARTIFICIAL INTELLIGENCE FALL 2025

B. Deep Learning and Reinforcement Learning

1. [9 pts.] Neural Network Architectures (CNNs & Transformers)
(a) [3 pts.] Derive the number of trainable parameters in a single convolutional

layer with input size H ×W ×Cin, kernel size k× k, and Cout output channels
(assume bias), and compare it with a fully connected (dense) layer of the same
input and output size.

(b) [3 pts.] Write the scaled dot-product self-attention formula (define Q,K, V ).
Explain why positional information is necessary in Transformers and describe
one method to inject positional information.

(c) [3 pts.] State one key benefit of (i) convolution for vision and (ii) self-attention.
Then design a minimal vision transformer for images that uses both structures:
specify how to tokenize the image into patch embeddings, where self-attention
is applied, and where convolution is introduced.

2. [14 pts.] Generative Models and Likelihood-based Training
(a) [2 pts.] Show that maximizing the likelihood of a generative model pθ(x)

given data distribution pdata(x) is equivalent to minimizing the KL divergence
KL(pdata ‖ pθ).

(b) [4 pts.]
Consider a normalizing flow model composed of L invertible transformations

z0 ∼ p(z0), z` = f`(z`−1), ` = 1, . . . , L, x = zL,

where each f` is bijective and differentiable, and p(z0) is a simple base den-
sity (e.g., standard Gaussian). Write down the training objective (loss) for
normalizing flows on a dataset {x(i)}Ni=1 sampled from the data distribution.

(c) [4 pts.] Explain why the variational autoencoder (VAE) uses the evidence lower
bound (ELBO) to approximate maximum likelihood training. Write down the
ELBO expression and explain the roles of the reconstruction term and the
regularization term.

(d) [4 pts.] We can interpret diffusion probabilistic models as a form of hierarchical
variational autoencoders (VAEs). Let x0 ∼ pdata denote a data sample. The
forward process (the encoder) is defined by adding noise

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1), q(xt | xt−1) = N (
√
αt xt−1, βtI) ,

where αt = 1− βt ∈ (0, 1) and ᾱt =
∏t
s=1 αs.

Write down the probabilistic model of the backward process (the decoder), and
show that the ELBO for log pθ(x0) can be written as

log pθ(x0) > − KL
(
q(xT | x0) ‖ p(xT )

)
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−
T∑
t=2

Eq
[
KL
(
q(xt−1 | xt, x0) ‖ pθ(xt−1 | xt)

)]
+ Eq

[
log pθ(x0 | x1)

]
.

3. [10 pts.] Policy Gradient Methods
Consider a discounted Markov Decision Process (MDP) (S,A, P, r, γ) with states

s ∈ S, actions a ∈ A, transition kernel P (s′ | s, a), reward r(s, a) bounded, and dis-
count γ ∈ (0, 1). Let πθ(a | s) be a differentiable, stochastic policy with parameters
θ, and let s0 be a fixed start state. Define the (discounted) return

G0 =

∞∑
t=0

γt r(st, at),

and the performance objective

J(θ) = V πθ (s0) = Eτ∼πθ
[
G0

]
,

where a trajectory τ = (s0, a0, s1, a1, . . .) is generated by st+1 ∼ P (· | st, at) and
at ∼ πθ(· | st).

Denote the value and action-value functions by

V π(s) = Eπ

[ ∞∑
t=0

γtr(st, at)
∣∣∣ s0 = s

]
,

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtr(st, at)
∣∣∣ s0 = s, a0 = a

]
,

and the advantage by Aπ(s, a) = Qπ(s, a)−V π(s). Let dπ(s) be the (unnormalized)
γ-discounted state visitation distribution:

dπ(s) =

∞∑
t=0

γt Pr(st = s | π).

(a) [6 pts.] Prove the Policy Gradient Theorem.

∇θJ(θ) = Eπθ

[ ∞∑
t=0

γt∇θ log πθ(at | st)Qπθ (st, at)

]

=
1

1− γ
Es∼dπθ , a∼πθ

[
∇θ log πθ(a | s)Qπθ (s, a)

]
.

(b) [4 pts.] Show that for any function b : S → R,

Eπθ

[ ∞∑
t=0

γt∇θ log πθ(at | st) b(st)

]
= 0,
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and hence the policy gradient can be equivalently written as

∇θJ(θ) = Eπθ

[ ∞∑
t=0

γt∇θ log πθ(at | st)
(
Qπθ (st, at)− b(st)

)]
.

In the advantage method, how should b(s) be chosen, and what is the benefit
of this choice?

C. Optimization Methods in Artificial Intelligence

Consider the regularized finite-sum problem

min
x∈Rd

F (x) := f(x) +R(x), f(x) :=
1

n

n∑
i=1

fi(x),

where each fi : Rd → R is convex and Li-smooth, the aggregate f is L-smooth and µ-
strongly convex (µ > 0), and R : Rd → (−∞,+∞] is proper, closed, and convex. For a
probability vector q = (q1, . . . , qn) with qi > 0 and

∑
i qi = 1, define a categorical random

variable s ∈ {1, . . . , n} with P(s = i) = qi. Fix a minibatch size τ ∈ {1, 2, . . .}, and draw
i.i.d. copies s1, . . . , sτ of s. Define the multisampling gradient estimator

g(x) :=
1

τ

τ∑
t=1

1

n qst
∇fst(x),

and the proximal SGD iteration

xk+1 = proxγR
(
xk − γ gk

)
, gk := g(xk).

We denote the Bregman divergence of f by

Df (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉.

1. [3 pts.] Basic Definitions: Give the definitions of L-smoothness and µ-strong con-
vexity.

2. [2 pts.] Uniqueness of the Minimizer: Show that F admits a unique minimizer x?.

3. [5 pts.] Unbiasedness of the Gradient Estimator: Prove that g(x) is unbiased, i.e.,
E[g(x)] = ∇f(x).

4. [8 pts.] Expected Smoothness Bound: Assuming each fi is Li-smooth and convex,
and f is L-smooth, show that for all x, y ∈ Rd,

E
[
‖g(x)− g(y)‖2

]
6 2A′′(τ, q)Df (x, y),
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where the expected-smoothness constant A′′ (depending on τ and q) is

A′′(τ, q) :=
1

τ

(
max
i

Li
nqi

)
+
(

1− 1

τ

)
L.

Hint: Expand the square, separate diagonal and cross terms using independence,
and use smoothness to bound gradient differences via Bregman divergences.

5. [4 pts.] Extremes, Monotonicity, and Interpolation:
(a) Evaluate A′′(τ, q) at τ = 1 and as τ → +∞. Identify the limiting algorithms

(SGD-NS vs. GD) and the corresponding constants.
(b) Show that A′′(τ, q) is nonincreasing in τ , and interpret how the minibatch size

τ interpolates between SGD-NS and GD.
Hint: Use 1

n

∑n
i=1 Li > L.

6. [4 pts.] Design of Importance Sampling q: For a fixed τ , minimize the first term of
A′′(τ, q), i.e.,

min
q∈∆n

max
i

Li
nqi

, where ∆n = {q ∈ Rn++ :
∑
i

qi = 1}.

Derive the optimal q? and the attained value of maxi
Li
nq?i

. Compare with uniform

sampling quni
i = 1

n .

Hint: Use 1
n

∑n
i=1 Li 6 maxi Li.

7. [3 pts.] Variance at the Optimum and Minibatch Scaling: Let ξ(x) := g(x)−∇f(x).
Show that

E
[
‖ξ(x?)‖2

]
=

1

τ
Var

(
1

nqs
∇fs(x?)

)
,

i.e., the variance at the optimum scales as 1/τ . Express your answer in terms of q
and {∇fi(x?)}ni=1.

8. [2 pts.] AC inequality and computing (A,C): Consider the following classical results:
AC inequality: There exist constants A > 0 and C > 0 such that for all k > 0,

E
[
‖gk −∇f(x?)‖2

∣∣ xk] 6 2ADf (xk, x?) + C.

Implication from expected smoothness: If g(x) is an unbiased estimator of
∇f(x) and, for all x, y,

E
[
‖g(x)− g(y)‖2

]
6 2A′′Df (x, y) + C ′′(y),

then for G(x, y) := E‖g(x)−∇f(y)‖2 one has the AC inequality

G(x, y) 6 2ADf (x, y) + C,

where A = 2A′′ and C = 2
(
Var[g(y)] + C ′′(y)

)
.
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Specialize the above implication to obtain the AC constants (A,C), and write an
explicit formula for Var[g(x?)].

9. [2 pts.] Stepsize and convergence: Given the classical convergence theorem of SGD:
Assume f is µ-convex, gk is unbiased, and the AC inequality holds with constants
(A,C). Then for any stepsize 0 < γ 6 1

A , the iterates satisfy

E‖xk − x?‖2 6 (1− γµ)k‖x0 − x?‖2 +
γC

µ
.

Using the (A,C) obtained in question 8 to compute:
• the admissible stepsize range;
• the explicit convergence bound with the noise floor written in closed form.

D. Natural Language Processing

Part I: Questions on Concepts and Algorithm Analysis [13 pts.]

1. [3 pts.] Embedding for Texts and Graphs. Embedding methods obtain vec-
tor representations of individual items by exploiting the relationships among them
within a collection. GloVe and Skip-Gram are used to learn representations of
words in text; Node2Vec learns representations of nodes in a network; and TransE
learns representations of entities and relations in a knowledge graph. In 2–3 sen-
tences each, succinctly describe the data signal, the learning objective type, and
the key inductive bias (the model’s built-in assumptions) for the four paradigms:
GloVe, Skip-gram, Node2Vec, TransE.

2. [5 pts.] Scaling Laws and Architectural Bias (LSTM vs. Transformer).
Consider language models trained autoregressively on the same corpus with identical
tokenization, context length, optimizer, and training pipeline. For an architecture
arch ∈ {LSTM,Transformer}, assume the test loss obeys

Larch(P, T ) = L∞ +AarchP
−αarch +BarchT

−βarch , αarch, βarch > 0,

where P is the parameter count and T is the number of training tokens. Assume
L∞ is the same across architectures (same task/data).
(a) Fixed-data regime. Fix a large but finite T = T0. On a log–log plot of

L(P, T0) − L∞ versus P , state the expected qualitative relationships between
(αarch, Aarch) for LSTM vs. Transformer and the resulting relative positions
and slopes of their P–L curves.

(b) Fixed-parameter regime. Fix a parameter budget P = P0 and vary T .
On a log–log plot of L(P0, T ) − L∞ versus T , state the expected qualitative
relationships between (βarch, Barch) for LSTM vs. Transformer and the relative
positions and slopes of their T–L curves.
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(c) Justification. Justify your answers in (a)–(b) from the viewpoints of: (i) long-
range dependency handling, (ii) parallelizability/throughput and optimization
dynamics, and (iii) inductive bias and sample efficiency.

3. [5 pts.] Analysis of a Markov Logic Network (MLN). A Markov Logic
Network (MLN) defines a probability distribution over possible worlds. It is specified
by a set of weighted first-order logic formulas, (φi, wi). For a given world x (i.e., a
truth assignment to all possible ground atoms), its probability is given by:

P (X = x) =
1

Z
exp

(∑
i

wini(x)

)
,

where wi is the weight of the i-th formula φi, ni(x) is the number of true groundings
of φi in world x, and Z is the partition function (normalization constant).

Consider a simple MLN designed to analyze topics of academic papers, consisting
of two weighted formulas:
(a) ∀p1, p2 Cites(p1, p2)∧ InTopic(p1, “AI”)⇒ InTopic(p2, “AI”), with weight w1 =

1.5;
(Interpretation: If a paper in the AI topic cites another paper, the cited paper
is also likely in the AI topic.)

(b) ∀p InTopic(p, “AI”), with weight w2 = −1.0.
(Interpretation: There is a general prior that a paper is less likely to be in the
AI topic.)

Assume our domain contains only two papers, P1 and P2, and one topic, “AI”.
Answer the following questions:
(a) Model Structure Analysis Please briefly describe the structure of the ground

Markov network corresponding to this MLN. What are the nodes? What are
the cliques and why?

(b) Probability Calculation Consider a specific possible world x1 where: P1
cites P2, P1 is in the AI topic, but P2 is not. Furthermore, P2 does not cite
P1. (i.e., Cites(P1,P2) is true, Cites(P2,P1) is false, InTopic(P1, “AI”) is true,
and InTopic(P2, “AI”) is false.) 1) For this world x1, calculate the number of
true groundings for each of the two formulas (i.e., find the values of n1(x1) and
n2(x1)). 2) Write down the un-normalized probability of world x1 (i.e., the
exp(. . . ) term).

(c) Parameter Impact Analysis 1) Suppose we change the weight of the first
formula, w1, from 1.5 to −1.5. In one sentence, what kind of academic cita-
tion phenomenon does the model now favor? 2) Without re-calculating specific
probabilities, what qualitative effect (e.g., significant increase, significant de-
crease, or little change) does this modification have on the probability of a world
where ‘P1’ and ‘P2’ are both AI papers and ‘P1’ cites ‘P2’? Briefly explain
your reasoning.
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(d) Maximum a Posteriori (MAP) Inference. Given that Cites(P1, P2) = true
and all other atoms are unobserved, and using the original weights w1 = 1.5
and w2 = −1.0, determine the MAP truth assignments for InTopic(P1, “AI”)
and InTopic(P2, “AI”). Provide a 1–2 sentence justification.

Part II: Questions on Algorithm and System Design [20 pts.]

4. [10 pts.] Topic–Ontology LDA for Fact Triples. A document d is represented
by a multiset of fact triples

Fd = {f = (s, r, o)},
where s ∈ Vs and o ∈ Vo are subject/object mentions (surface phrases), and r ∈ Vr
is a relation mention. Each triple also carries latent ontology variables: subject
type cs ∈ C, object type co ∈ C, and relation type t ∈ R. Assume there are K
topics. The goal is to uncover (i) document–level topic mixtures and (ii) ontology
assignments/types for entities and relations using an LDA-style generative approach.
Unless stated otherwise, use symmetric Dirichlet priors.
(a) Generative process & model specification. Design an LDA-style gen-

erative model that jointly produces fact triples. Your model should at least
include: document-level topic mixtures θd ∼ Dir(α); topic-specific distribu-

tions over ontology variables π
(s)
k on C, π(o)

k on C, π(r)
k on R; and type-specific

surface-form distributions φ
(s)
c on Vs, φ(o)

c on Vo, φ(r)
t on Vr.

(b) Joint probability. Write the factorized form of the full joint

p(Θ,Π,Φ, Z, Cs, Co, T, S,O,R | hyperparameters),

where Θ = {θd}d, Π = {π(s)
k , π

(o)
k , π

(r)
k }k, Φ = {φ(s)

c , φ
(o)
c }c∈C ∪ {φ(r)

t }t∈R and
Z = {zf}, Cs = {cs,f}, Co = {co,f}, T = {tf}, and S,O,R the observed
mentions.

(c) Automatic naming of discovered categories. After inference, suppose you
obtain several latent categories for ontologies (entity types and relation types).
Design an automatic naming method that gives a reasonable name for each
category.

5. [10 pts.] Design and Analyze a Text-to-Image Diffusion System. You will
design a text-to-image generation system. Given a text prompt T , the system
should generate an image I. We adopt a diffusion framework with a Transformer
backbone for the image denoiser and a Transformer for the text encoder.
(a) Forward process, ELBO, and closed-form posteriors. Let the clean

image be x0 ∈ RH×W×C and define the forward noising process

q(xt | xt−1) = N
(√
αt xt−1, βtI

)
, βt = 1− αt, ᾱt =

t∏
s=1

αs,

with prior p(xT ) = N (0, I).
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(i) Show that q(xt | x0) = N
(√
ᾱt x0, (1− ᾱt)I

)
.

(ii) Express the evidence lower bound (ELBO) on log pθ(x0) as the sum of a
reconstruction term and KL divergence terms. You may state the final
expression directly; if you provide a derivation, include only the two key
steps.

(iii) Show that the exact posterior q(xt−1 | xt,x0) is Gaussian with variance

β̃t = 1−ᾱt−1

1−ᾱt βt and provide its mean.

(b) Noise-prediction parameterization and training loss. Assume pθ(xt−1 |
xt) = N

(
xt−1;µθ(xt, t), σ

2
t I
)

with fixed σ2
t = β̃t.

(i) Show that the optimal mean can be parameterized by a noise-prediction
network εθ as

µθ(xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

εθ(xt, t)

)
.

(ii) Prove that, up to constant and per-timestep weights, training reduces to

Lt = Et,x0,ε

[∥∥ε− εθ(
√
ᾱtx0 +

√
1− ᾱtε, t)

∥∥2

2

]
,

where ε ∼ N (0, I) and t is sampled from a specified distribution over
{1, . . . , T}.

(c) Text-conditional modeling with a Transformer. Design a conditional
reverse process pθ(xt−1 | xt,Text) using Transformer architecture. Your answer
should specify:

(i) How to implement the image denoiser using a Transformer architecture;
(ii) How to condition the image denoiser on the input text.
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