Problems for GR qualifying examination

Solutions should include sufficients details and explanations.

We consider spacetime metrics with signature -+++.

Problem 1: Analysis of null geodesics in the Schwarzshild spacetime with line element

$$ds^{2} = -fdt^{2} + f^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}), \quad f = 1 - 2M/r.$$

Let $\xi^a = (\partial_t)^a$, $\psi^a = (\partial_\phi)^a$ be the static and axial Killing fields, respectively. The energy E and azimuthal angular momentum L of a null geodesic with 4-velocity u^a are given by

$$E = -\xi^a u_a, \quad L = \psi^a u_a$$

a) Show that E and L are conserved.

10 pts.

b) Write an expression for the energy of an equatorial null geodesic ($\theta = \pi/2$) in terms of its azimuthal angular momentum and radial velocity.

 $10\ \mathrm{pts.}$

- **Problem 2:** Consider the paraboloid P with equation $x^2 + y^2 + z^2 t^2 = \Lambda^2$ in Minkowski space with metric $-dt^2 + dx^2 + dy^2 + dz^2$.
 - a) Show that the induced metric on P is Lorentzian.

10 pts.

b) Calculate the Einstein tensor of P.

20 pts.

Problems for QFT qualifying examination

1) The Dirac Field.

- i) Show that the Dirac equation is Lorentz invariant.
- ii) Compute the Dirac propagator

$$iS_{\alpha\beta}(x) \equiv \langle 0|T\left[\Psi_{\alpha}(x)\overline{\Psi}_{\beta}(0)\right]|0\rangle,$$

and show that it can be written as

$$iS(x) = i \int \frac{d^4p}{(2\pi)^4} e^{-ip \cdot x} \frac{i}{\not p - m + i\epsilon} .$$
15 pts.

2) Coupling constant renormalization in φ^4 -theory. The two-particle scattering amplitude in φ^4 -theory is given by

where the last term is the counterterm. The renormalization condition is given by

$$i\mathcal{M} = -i\lambda_P$$
 at $s = 4m_P^2$, $t = u = 0$.

Compute $V(p^2)$ using dimensional regularization and Feynman parameters. Fix C to second order in λ_P this way.

25 pts.

10 pts.