清华大学考试试题专用纸

考试课程 Subject:	求真书院代数博士生资格考 Algebra qualify exam for Qiuzhen College
	姓名 Name:
	学号 Student ID:

- 考试时间: 2024 年 9 月 Exam Time: 2024.09
- 本试卷共 3 页, 9 道大题, 总分为 100 分. This exam has 3 pages, 9 problems, 100 points.
- 考生默认遵守考试纪律, 不遵守者后果自负. Candidates are expected to adhere to the examination discipline by default, and those who do not comply will bear the consequences themselves.
- 所有的解答请写出必要的细节, 推理依据和推理过程. All answers must include necessary details, reasoning basis, and the process of reasoning.

以下题目中 ${\bf Q}$ 指有理数域, ${\bf R}$ 指实数域, ${\bf C}$ 指复数域, ${\bf Z}$ 指整数全体, ${\bf F}_q$ 是有 q 个元素的有限域. **在题目中环均指含幺交换环**.

In the following problems, \mathbf{Q} is the field of rational numbers, \mathbf{R} is the field of real numbers, \mathbf{C} is the field of complex numbers, \mathbf{Z} is the ring of integers, \mathbf{F}_q is the finite field consisting of q elements. In all the problems, ring means commutative ring with multiplicative unit.

题 1 (10 points). 设 q 是一个素数的幂. 计算 \mathbf{F}_q 上次数为 21 的首一不可约多项式的数量.

Suppose q is a prime power. Compute the number of monic irreducible polynomials of degree 21 over \mathbf{F}_q .

题 2 (10 points). 给定正整数 n. 考虑所有迹为零的 n+1 阶复方阵构成的李代数 $\mathfrak{g}=\mathfrak{sl}_{n+1}(\mathbf{C})$. 令 \mathfrak{h} 为 \mathfrak{g} 中的对角矩阵构成的子空间.

- (i) 写出 g 关于 h 的 Cartan 分解 (也称作根分解).
- (ii) 描述 (g, h) 的根系中的所有根, 并证明你的结论.

Given a positive integer n. Let $\mathfrak{g} = \mathfrak{sl}_{n+1}(\mathbf{C})$ be the Lie algebra of all $(n+1) \times (n+1)$ complex matrices with trace 0. Let \mathfrak{h} be the space of all diagonal matrices in \mathfrak{g} .

- (i) Give the Cartan decomposition (also called root decomposition) of \mathfrak{g} with respect to \mathfrak{h} .
- (ii) Describe all roots in the root system associated with $(\mathfrak{g},\mathfrak{h})$, and prove your result.

题 3 (10 points). 给定素数 p. 考虑群

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ a & b \end{bmatrix} \middle| a \in \mathbf{F}_p, b \in \mathbf{F}_p^{\times} \right\} \subset \mathrm{GL}(2, \mathbf{F}_p).$$

其中群运算由矩阵乘法给出. 求出 G 的不可约复表示的特征表.

Let p be a prime number. Consider group

$$G = \{ \begin{bmatrix} 1 & 0 \\ a & b \end{bmatrix} | a \in \mathbf{F}_p, b \in \mathbf{F}_p^{\times} \} \subset \mathrm{GL}(2, \mathbf{F}_p)$$

with group law given by matrix multiplication. Find the character table for irreducible complex representations of G.

题 4 (10 points). 设有限非交换单群 G 满足 $|G| \leq 60$. 求所有可能的 G.

Suppose G is a finite non-abelian simple group such that $|G| \leq 60$. Find all possible G.

题 5 (12 points). 设 q 是一个素数的幂.

- (i) 证明任何 \mathbf{F}_q 上的幂零方阵都与一个约当标准形矩阵相似.
- (ii) 计算 \mathbf{F}_q 上所有 3×3 幂零矩阵的数量.

Suppose q is a prime power.

- (i) Prove that any nilpotent square matrix over \mathbf{F}_q is similar to a matrix of the Jordan normal form.
- (ii) Compute the number of 3×3 nilpotent matrices over \mathbf{F}_q .

题 6 (12 points). 给定交换环 R, 考虑如下 R 模同态构成的交换图表

满足

(i) 所有列都是短正合列;

第2页,共4页

- (ii) 第一行与第三行是短正合列;
- (ii) 第二行 $A_2 \to B_2 \to C_2$ 的复合是零同态.

证明第二行也是一个短正合列.

Let R be any commutative ring, and consider the commutative diagram (1) (see above) of Rmodule homomorphisms. Suppose we have

- (i) All the columns are short exact sequences;
- (ii) The first and third rows are short exact sequences;
- (ii) The composition $A_2 \to B_2 \to C_2$ is zero.

Prove that the second row is a short exact sequence.

题 7 (12 points). 令 $\mathbf{F} = \mathbf{Q}[\cos \frac{\pi}{15}]$.

- (i) 证明 \mathbf{F}/\mathbf{Q} 为伽罗瓦扩张.
- (ii) 求 Gal(\mathbf{F}/\mathbf{Q}).
- (iii) 求一个域扩张链 $\mathbf{Q} = \mathbf{F}_0 \subset \mathbf{F}_1 \subset \cdots \subset \mathbf{F}_k = \mathbf{F}$, 使得 $[\mathbf{F}_{i+1} : \mathbf{F}_i]$ 为素数.

Let
$$\mathbf{F} = \mathbf{Q}[\cos \frac{\pi}{15}]$$
.

- (i) Prove \mathbf{F}/\mathbf{Q} is a Galois extension.
- (ii) Find the structure of $Gal(\mathbf{F}/\mathbf{Q})$.
- (iii) Find a chain $\mathbf{Q} = \mathbf{F}_0 \subset \mathbf{F}_1 \subset \cdots \subset \mathbf{F}_k = \mathbf{F}$ of field extensions, such that $[\mathbf{F}_{i+1} : \mathbf{F}_i]$ are prime numbers.

题 8 (12 points). 考虑环 $\mathbf{Z} \left[\frac{1+\sqrt{-3}}{2} \right]$.

- (i) 证明 $\mathbf{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ 是一个欧几里得整环.
- (ii) 设 $p \geq 5$ 是一个素数. 设 $\alpha \in \overline{\mathbf{F}}_p \backslash \mathbf{F}_p$ 是一个元素, 使得 $\alpha^3 = -1$. 推导 $(\alpha \alpha^{-1})^2 = -3$, 并证明 p 在 $\mathbf{Z} \left\lceil \frac{1 + \sqrt{-3}}{2} \right\rceil$ 中不可约当且仅当 $p \equiv 2 \pmod{3}$.

Consider the ring $\mathbf{Z} \left[\frac{1+\sqrt{-3}}{2} \right]$.

- (i) Prove that $\mathbf{Z} \begin{bmatrix} \frac{1+\sqrt{-3}}{2} \end{bmatrix}$ is a Euclidean domain.
- (ii) Let $p \geq 5$ be a prime number. Let $\alpha \in \overline{\mathbf{F}}_p \backslash \mathbf{F}_p$ be an element so that $\alpha^3 = -1$. Deduce that $(\alpha \alpha^{-1})^2 = -3$, and show that p is irreducible in $\mathbf{Z} \left[\frac{1 + \sqrt{-3}}{2} \right]$ if and only if $p \equiv 2 \pmod{3}$.

题 9 (12 points). 给定素数 p. 设 R 是一个局部环, 满足对任意元素 $r \in R$ 均有 $r^p = r$. 令 I 为 R 的极大理想.

- (i) 求 R/I 的所有可能性;
- (ii) 求 R 的所有可能性.

Let p be a prime number. Suppose R is a local ring such that for any element $r \in R$, we have $r^p = r$. Let I be the maximal ideal of R.

- (i) Find all the possibilities of R/I;
- (ii) Find all the possibilities of R.