Publications
[1] C. Su and X. Zhao, A uniformly and optimally accurate method for the Klein-Gordon-Zakharov system in simultaneous high-plasma-frequency and subsonic limit regime, J. Comp. Phys., 428: 110064, 2021.
[2] A. Ostermann and C. Su*, A Lawson-type exponential integrator for the Korteweg-de Vries equation, IMA J. Numer. Anal., 40: 2399-2414, 2020.
[3] C. Su and X. Zhao, On time-splitting methods for nonlinear Schrodinger equation with highly oscillatory potential, ESAIM: Math. Model. Numer. Anal., 54: 1491–1508, 2020.
[4] A. Ostermann and C. Su*, Two exponential-type integrators for the “good” Boussinesq equation, Numer. Math., 143 (3): 683-712, 2019.
[5] W. Bao, R. Carles, C. Su and Q. Tang, Regularized numerical methods for the logarithmic Schrodinger equation, Numer. Math., 143 (2): 461-487, 2019.
[6] W. Bao, R. Carles, C. Su* and Q. Tang, Error estimates of a regularized finite difference method for the logarithmic Schrodinger equation, SIAM J. Numer. Anal., 57 (2): 657-680, 2019.
[7] W. Bao and C. Su*, A uniformly and optimally accurate method for the Zakharov system in the subsonic limit regime, SIAM J. Sci. Comp., 40 (2): A929-A953, 2018.
[8] W. Bao and C. Su*, Uniform error bounds of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime, Math. Comp., 87 (313): 2133-2158, 2018.
[9] W. Bao and C. Su, Uniform error bounds of a finite difference method for the Zakharov system in the subsonic limit regime via an asymptotic consistent formulation, SIAM Multiscale Model. Simul., 15: 977-1002, 2017.
[10] C. Su and Z. Li, Error analysis of a dual-parametric bi-quadratic FEM in cavitation computation in elasticity, SIAM J. Numer. Anal., 53: 1629-1649, 2015.