AbstractContact structures on 3-manifolds are given by a hyperplane distribution in the tangent bundle satisfying a condition called "complete non-integrability". Contact structures fall into one of two classes: tight or overtwisted. Ozsvath and Szabo introduced invariants of contact structures using Heegaard Floer homology. In this talk, I will survey some recent results about the tightness an...
AbstractWe discuss the enumerative geometry of moduli spaces of sheaves with 2 dimensional support on K3 surfaces in K3-fibered threefolds and 4 folds. The reason to study such specific geometric setups is that these often provide computable invariants which govern deep information about geometry of moduli spaces of solutions to N=2 Super Yang-Mills theory on K3 surfaces, when the base surface ...