﻿ Statistics of irreducible subrepresentations in large tensor powers of finite dimensional modules over simple Lie algebras-Qiuzhen College,Tsinghua University

Statistics of irreducible subrepresentations in large tensor powers of finite dimensional modules over simple Lie algebras

Time：10:30-12:00, Dec. 07, 2022

Venue：Zoom: 537 192 5549（PW: BIMSA）

Organizer：Zhengwei Liu, Sebastien Palcoux, Yilong Wang, Jinsong Wu

Speaker：Nicolai Reshetikhin YMSC, BIMSA

Abstract

I will explain the solution to the following problem. Given a finite dimensional irreducible representation of a simple Lie algebra, consider its N-th tensor power. It has a decomposition into the direct sum of irreducible modules. The problem is how to find the asymptotic of multiplicities of irreducible subrepresentations in the limit N \to \infty and how to find the asymptotic of the Plancherel and character measures on the set of irreducible components in this limit.

Speaker Intro

Nicolai Reshetikhin教授出生于前苏联列宁格勒，即现俄罗斯圣彼得堡。1982年，毕业于列宁格勒国立大学，获得学士学位与硕士学位。1984年，毕业于斯捷克洛夫数学研究所，获得博士学位。曾在哈佛大学、加州大学伯克利分校等知名大学任教。两次受邀在ICM国际数学家大会做报告，其中一次为大会报告。Reshetikhin教授的主要研究方向为量子拓扑，量子群及其表示，经典与量子可积系统，可积统计力学模型。他是量子群理论创始人之一、RT不变量的创始人之一、量子可积系统理论的重要推动人，泊松几何、辛几何的重要贡献者，Quantum Kac-Moody代数的重要贡献者、和量子引力有关的量子6j记号的奠基者。2021年，当选为美国数学会会士。

DATEDecember 7, 2022
SHARE
Related News
• 0

On the statistics of irreducible subrepresentations in large tensor powers of finite dimensional modules over simple Lie algebras (II)

AbstractI will explain the solution to the following problem. Given a finite dimensional irreducible representation of a simple Lie algebra, consider its N-th tensor power. It has a decomposition into the direct sum of irreducible modules. The problem is how to find the asymptotic of multiplicities of irreducible subrepresentations in the limit N \to \infty and how to find the asymptotic of the...

• 1

Growth in tensor powers

AbstractThis talk is based on joint work with K.Coulembier, P.Etingof, D.Tubbenhauer. Let G be any group and let V be a finite dimensional representation of G over some field. We consider tensor powers of V and their decompositions into indecomposable summands. The main question which will be addressed in this talk: what can we say about count (e.g. total number) of these indecomposable summand...