Academics

Statistics of irreducible subrepresentations in large tensor powers of finite dimensional modules over simple Lie algebras

Time:10:30-12:00, Dec. 07, 2022

Venue:Zoom: 537 192 5549(PW: BIMSA)

Organizer:Zhengwei Liu, Sebastien Palcoux, Yilong Wang, Jinsong Wu

Speaker:Nicolai Reshetikhin YMSC, BIMSA

Abstract

I will explain the solution to the following problem. Given a finite dimensional irreducible representation of a simple Lie algebra, consider its N-th tensor power. It has a decomposition into the direct sum of irreducible modules. The problem is how to find the asymptotic of multiplicities of irreducible subrepresentations in the limit N \to \infty and how to find the asymptotic of the Plancherel and character measures on the set of irreducible components in this limit.


Speaker Intro

Nicolai Reshetikhin教授出生于前苏联列宁格勒,即现俄罗斯圣彼得堡。1982年,毕业于列宁格勒国立大学,获得学士学位与硕士学位。1984年,毕业于斯捷克洛夫数学研究所,获得博士学位。曾在哈佛大学、加州大学伯克利分校等知名大学任教。两次受邀在ICM国际数学家大会做报告,其中一次为大会报告。Reshetikhin教授的主要研究方向为量子拓扑,量子群及其表示,经典与量子可积系统,可积统计力学模型。他是量子群理论创始人之一、RT不变量的创始人之一、量子可积系统理论的重要推动人,泊松几何、辛几何的重要贡献者,Quantum Kac-Moody代数的重要贡献者、和量子引力有关的量子6j记号的奠基者。2021年,当选为美国数学会会士。

DATEDecember 7, 2022
SHARE
Related News
    • 0

      On the statistics of irreducible subrepresentations in large tensor powers of finite dimensional modules over simple Lie algebras (II)

      AbstractI will explain the solution to the following problem. Given a finite dimensional irreducible representation of a simple Lie algebra, consider its N-th tensor power. It has a decomposition into the direct sum of irreducible modules. The problem is how to find the asymptotic of multiplicities of irreducible subrepresentations in the limit N \to \infty and how to find the asymptotic of the...

    • 1

      Growth in tensor powers

      AbstractThis talk is based on joint work with K.Coulembier, P.Etingof, D.Tubbenhauer. Let G be any group and let V be a finite dimensional representation of G over some field. We consider tensor powers of V and their decompositions into indecomposable summands. The main question which will be addressed in this talk: what can we say about count (e.g. total number) of these indecomposable summand...