Arithmetic holonomy bounds and their applications

Time:2023-01-17 Tue 20:00-21:30

Venue:Zoom: 293 812 9202(PW: BIMSA)

Organizer:Hansheng Diao, Yueke Hu, Emmanuel Lecouturier, Cezar Lupu

Speaker:Vesselin Dimitrov Institute for Advanced Study in Princeton


On the heels of the proof of the Unbounded Denominators conjecture (previously presented in this seminar by Yunqing Tang), we discuss an upgraded and refined form of our main technical tool in this area, the "arithmetic holonomicity theorem," of which we will detail a proof based on Bost's slopes method. Our treatment will lead us to a new alternative argument for the unbounded denominators theorem on the Fourier expansions of noncongruence modular forms. We will then conclude by explaining how the same arithmetic holonomicity theorem also leads to a proof of the irrationality of all products of two logarithms $\log(1+1/n)\log(1+1/m)$ for arbitrary integer pairs $(n,m)$ with $|1-m/n| < c$, where $c > 0$ is a positive absolute constant. This is a joint work with Frank Calegari and Yunqing Tang.

DATEJanuary 17, 2023
Related News
    • 0

      Differential Geometry Seminar | Spectral bounds on hyperbolic 3-manifolds

      Abstract:I will discuss some new bounds on the spectra of Laplacian operators on hyperbolic 3-manifolds. One example of such a bound is that the spectral gap of the Laplace-Beltrami operator on a closed orientable hyperbolic 3-manifold must be less than 47.32, or less than 31.57 if the first Betti number is positive. The bounds are derived using two approaches, both of which employ linear prog...

    • 1

      Bounds for standard L-functions

      AbstractWe consider the standard L-function attached to a cuspidal automorphic representation of a general linear group. We present a proof of a subconvex bound in the t-aspect. More generally, we address the spectral aspect in the case of uniform parameter growth. These results are the subject of the third paper linked below, building on the first two.SpeakerPaul Nelson works in Analytic Numbe...