AbstractWe study some natural representations of current Lie algebras $g\otimes \Bbbk[t]$, called Weyl modules. They are natural analogues of irreducible representations of simple Lie algebras. There are several current analogues of classical theorems about Lie algebras where these modules «play role» of irreducible modules. In my talk I will explain analogues of duality theorems, namely Peter-...
Abstract:There are various classical duality theorems such as Schur-Weyl duality, Howe duality etc. We prove the versions of these theorems for current and related Lie algebras. I will explain how these theorems follow from the highest weight structure on the category of representations