AbstractAll sorts of algebro-geometric moduli spaces (of stable curves, stable sheaves on a CY 3-foldsflat bundles, Higgs bundles..) are best understood as objects in derived geometry. Derivedenhancements of classical moduli spaces give transparent and intrinsic meaning to previously ad-hoc structures pertaining to, for instance, enumerative geometry and are indispensable for more formore advan...
AbstractWe elaborate on construction of a derived Lagrangian intersection theory on moduli spaces of divisors on compact Calabi Yau threefolds. Our goal is to compute deformation invariants associated to a fixed linear system of divisors in CY3. We degenerate the CY3 into a normall crossing singular variety composed of Fano threefolds meeting along a K3. The deformation invariance arguments, to...