AbstractWe investigate the high energy behavior of the SU(N) chiral Gross-Neveu model in 1 + 1 dimensions. The model is integrable and matrix elements of several local operators (form factors) are known exactly. The form factors show rapidity space clustering, which means factorization, if a group of rapidities is shifted to infinity. We analyze this phenomenon for the SU(N) model. For several ...
AbstractWe introduce an quantum entropy for bimodule quantum channels on finite von Neumann algebras, generalizing the remarkable Pimsner-Popa entropy. The relative entropy for Fourier multipliers of bimodule quantum channels establishes an upper bound of the quantum entropy. Additionally, we present the Araki relative entropy for bimodule quantum channels, revealing its equivalence to the rela...