AbstractIn this talk, I will describe the construction known as 'Zesting of Braided Fusion Categories', a procedure that can be used to obtain new modular categories from a modular category with non-trivial invertible objects. I will also present our work on classifying and constructing all possible braided zesting data for modular categories associated with quantum groups at roots of unity. We...
AbstractIt is well-known since the work of Hopf, Drinfel’d, Majid, Witten, and etc. in the late 20th century that Hopf algebra quantum groups play a signification role in both physics and mathematics. In particular, the category of representations of quantum groups are braided, and hence captures invariants of knots. This talk is based on works with F. Girelli, where we develop a systematic ca...