Academics

Moduli Spaces and Related Topics | Universal holomorphic maps, conflict between fully hypercyclicity and slow growth

Time:Wednesday, 14:00-15:00 April 17, 2024 * first talk 2024.4.17 (Wed) 2:00-3:00 pm, second talk 2024.4.18 (Thurs) 10:00-11:00 am (Remark: the first talk will be general, and the second talk will contain more details)

Venue:C654 Shuangqing Complex Building

Organizer:Xiang He, Chenglong Yu, Dingxin Zhang, Jie Zhou

Speaker:Zhangchi Chen 陈张弛 中国科学院晨兴数学中心

Abstract:

In the space O(C,C) of entire functions, equipped with the open-compact topology, an element is called universal if its translation orbit is dense. It is hypercyclic w.r.t some translation operator if its orbit under this operator is dense. It is fully hypercyclic if it is simultaneously hypercyclic to all non-trivial translations in all directions.

Universal entire functions are transcendental, hence their Nevanlinna characteristic functions grows faster than O(log r). Dinh-Sibony asked what the slowest Nevanlinna growth of universal entire curves is. In a joint work with Dinh Tuan Huynh and Song-Yan Xie, we solved their question completely, by constructing universal entire curves in CP^n whose Nevanlinna growth is slower than any given transcendental entire function.

Bin Guo and Song-Yan Xie discovered the conflict between fully hypercyclicity and slow growth. They proved that if the growth is too slow then the hypercyclic directions in [0,2pi) has Hausdorff dimension 0.

Replace C by the unit disc D, and translations by Aut(D), one can also talk about universal holomorphic discs. Transcendental functions defined on D with bounded Nevanlinna characteristic functions are called of bounded type, which is the analogous property of having slow growth. In a joint work with Bin Guo and Song-Yan Xie, we constructed universal discs in CP^n of bounded type. We also discovered a weak-conflict between fully hypercyclicity and slow growth. If the disc is of bounded type, then the hypercyclic directions in [0,2pi) has Lebesgue measure 0.

DATEApril 16, 2024
SHARE
Related News
    • 0

      Universal meromorphic functions with slow growth

      AbstractI will show a solution to a problem asked by Dinh and Sibony in their open problem list, about minimal growth of universal meromorphic functions. This is joint work with Dinh Tuan Huynh and Zhangchi Chen. If time permits, I will also discuss my recent joint work with my Ph.D. student Bin Guo, about the existence of universal holomorphic functions in several variables with slow growth.Sp...

    • 1

      Liouville type theorem for harmonic maps of controlled growth

      AbstractWe show a Liouville type result for harmonic maps from a manifold with nonnegative Ricci curvature into positively curved target under the condition that the maps have some growth condition. Our result can be interpreted as an improved version of Choi's classical work. Moreover, Schoen-Uhlenbeck's example shows that our growth condition is almost sharp. The proof relies on Ecker-Huisken...