AbstractA general curve C of genus 6 can be embedded into the unique quintic del Pezzo surface X_5 as a divisor of class -2K_{X_5}. This embedding is unique up to the action of the symmetric group S_5. Taking a double cover of X_5 branched along C yields a K3 surface Y. Thus the K-moduli spaces of the pair (X_5, cC) can be studied via wall-crossing and by relating them to the Hassett-Keel progr...
Abstract Odaka proposed a conjecture predicting that the degrees of CM line bundles for families with fixed general fibers are strictly minimized if the special fibers are K-stable. This conjecture is called CM minimization and a quantitative strengthening of the conjecture of separatedness of moduli spaces of K-stable varieties (K-moduli). This conjecture was already shown for K-ample (Wang-Xu...