Abstract:Higher dimensional Heegaard Floer homology (HDHF) is a higher dimensional analogue of Heegaard Floer homology in dimension three. It's partly used to study contact topology in higher dimensions. In a special case, it's related to symplectic Khovanov homology. In this talk, we discuss HDHF of cotangent fibers of the cotangent bundle of an oriented surface and show that it is isomorphic ...
AbstractIn this talk I will introduce how Prof. Birkar's construction of compact moduli spaces of stable minimal models is used to give a generalization of Shafarevich's program to higher dimensional families with fibers of an arbitrary Kodaira dimension