AbstractIn this talk, we will be concerned with the isomonodromy equation corresponding to the linear differential system with coefficients u+A/z, and introduce the asymptotic behavior and series expansion of its solutions at a certain boundary point. Our main technique is to apply the Riemann-Hilbert mapping at this boundary point
AbstractAn LG model (M, f) is given by a noncompact complex manifold M and the holomorphic function f defined on it, which is an important model in string theory. Because of the mirror symmetry conjecture, the research on the geometric structure and quantization theory of LG model has attracted more and more attention. Given a Calabi-Yau (CY) manifold, we can define Gromov-Witten theory (A theo...