Abstract:We consider a biased random walk on dynamical percolation and discuss the existence and the properties of the linear speed as a function of the bias. In particular, we establish a simple criterion to decide whether the speed is increasing or decreasing for large bias. This talk is based on joint work with Sebastian Andres, Nina Gantert, and Perla Sousi
AbatractIn this talk, we consider random conductance models with stable-like long range jumps, and obtain the quenched invariance principle (QIP) and a quantitative version of stochastic homogenization for the scaled random walks with explicit polynomial rates up to logarithmic corrections.For QIP, we utilize probabilistic potential theory for the corresponding jump processes, and two essential...