Academics

Machine Learning and Seismic Tomography

Time:Fri., 14:30-16:30 June 28, 2024

Venue:Lecture Hall B725 Shuangqing Complex Building Online Zoom Meeting ID: 271 534 5558 Passcode: YMSC

Speaker:Xu Yang 杨旭 University of California, Santa Barbara

Speaker

Xu Yang got his Ph.D. at the University of Wisconsin-Madison in 2008, and spent two years at Princeton and two years at Courant Institute of NYU as a postdoc. He joined the University of California, Santa Barbara as an assistant professor in 2012, and became a full professor in 2020. His current research focuses on seismic imaging using realistic earthquake data. He has also been working on the applied analysis and numerical computation of scientific problems, including photonic graphene, ferromagnetic materials, and biological modeling.


Abstract

The stochastic gradient descent (SGD) method and deep neural networks (DNN) are two main workhorses in machine learning. In this talk, we present some preliminary results on connecting SGD and DNN to the applications in seismic tomography. On the one hand, motivated by SGD, we propose to use random batch methods to construct the gradient for iterations in seismic tomography. On the other hand, we use deep neural networks to create a reliable PmP database from massive seismic data and study the case in Southern California. The major difficulty lies in that the identifiable PmP waves are rare, making the problem of identifying the PmP waves from a massive seismic database inherently unbalanced.

DATEJune 27, 2024
SHARE
Related News
    • 0

      How data science and machine learning interpret genomic data and contribute to personalized medicine

      Abstract:High‐throughput genomics yields vast amounts of data for personalized medicine and other health-related discoveries. For instance, genome‐wide association studies (GWAS), which involves tens of thousands to millions of subjects, have linked thousands of genetic changes or variants with human diseases. Accumulating these variants across a subjects' entire genome can help predict thei...

    • 1

      Model Selection for Optimal Regression Learning

      In statistical learning, various mathematical optimalities are used to characterize performances of different learning methods. They include minimax optimality from a worst-case standpoint and asymptotic efficiency from a rosy view that the regression function to be learned sits there to be discovered. When multiple models, e.g., trees, neural networks and support vector machines, are considere...