Academics

Machine Learning for Theoretical Physics

Time:2023-03-03 ~ 2023-05-08 Mon | Fri 09:50 - 12:15

Venue: Room 1129B | 1118 ZOOM: 482 240 1589 | 242 742 6089 PW: BIMSA

Speaker:Shailene Lal

Prerequisite

Elementary multivariate calculus, elementary statistics. Some basic General Relativity and Statistical Mechanics may help in following the applications.


Abstract

The course is targeted to those who know beginning graduate level physics but do not know machine learning. We will cover important methods in machine learning with a view to their applications to current physics such as string theory, particle physics, critical phenomena, gravitational waves and integrability. We will also cover some applications to Lie algebras. We will use Python3, scikit-learn and Keras/Tensorflow. These will be introduced in the lectures.


Lecturer Intro.

Dr Shailesh Lal received his PhD from the Harish-Chandra Research Institute. His research interests are applications of machine learning to string theory and mathematical physics, black holes in string theory and higher-spin holography.

DATEMarch 3, 2023
SHARE
Related News
    • 0

      Machine Learning for Finance

      Lecturer: Zhen Li (李振, Assistant Professor)Time: Thu 08:50-12:15Venue: A3-4-312Zoom: 518 868 7656Password: BIMSAWebsite: https://bimsa.net/activity/MacLeaforFin/IntroductionThe financial sector is experiencing a profound transformation, driven by unprecedented technological advancements. At the forefront of this revolution is machine learning, a powerful subset of artificial intelligence. Thi...

    • 1

      Probabilistic machine learning

      IntroductionProbabilistic approach in machine and deep learning leads to principled solutions. It provides explainable decisions and new ways for improving of existing approaches. Bayesian machine learning consists of probabilistic approaches that rely on Bayes formula. It can help in numerous applications and has beautiful mathematical concepts behind. In this course, I will describe the found...