Course DescriptionDeligne-Lusztig theory aims to provide geometric methods (l-adic cohomology of varieties in positive characteristic) to study representations of finite groups of Lie type. We propose an introduction to this theory, starting with the enlightening example of the finite group SL_2(q) acting on Drinfeld curve.In the second part of this course, we will develop the general theory as...
Record: YesLevel: GraduateLanguage: EnglishPrerequisiteLinear algebra, basics of Riemmanian geometryAbstractThe classification of Riemannian manifolds with special holonomy contains two “exceptional” cases: G2 and Spin(7). Manifolds with holonomy contained in G2 or Spin(7) are called G2-manifolds or Spin(7)-manifolds, respectively. In this course, I will introduce various topics of G2 and Spi...