AbstractWe study the homogenization of the PDE $-A(x/\varepsilon):D^2 u_{\varepsilon} = f$ posed in a bounded convex domain subject to a Dirichlet boundary condition and the numerical approximation of the homogenized problem, where the measurable, uniformly elliptic, periodic and symmetric diffusion matrix $A$ is merely assumed to be essentially bounded and (in dimension $n>2$) to satisfy the C...
摘 要:Homogenization is a general phenomenon when physical processes in periodic or random environments exhibit homogeneous long time dynamics due to large space averaging of the variations in the environment. While this area of Mathematics saw a slew of remarkable developments in the last 20 years, the progress in the case of reaction-diffusion equations, which model many important physical ...