Title: Geometry and Topology of DataAbstract: Data sets are often equipped with distances between data points, and thereby constitute a discrete metric space. We develop general notions of curvature that capture local and global properties of such spaces and relate them to topological concepts such as hyperconvexity. This also leads to a new interpretation of TDA.
AbstractThe Yang-Mills-Higgs eqautions are the nonabelian generalization of Maxwell-Klein-Gordon system, which models the motion of charged particles in electromagnetic field. It is well known that such system admits global smooth solutions in general globally hyperbolic spacetimes. In this talk, we will show that the solutions in the future of a hyperboloid asymptotically decay like linear sol...