Title: Geometry and Topology of DataAbstract: Data sets are often equipped with distances between data points, and thereby constitute a discrete metric space. We develop general notions of curvature that capture local and global properties of such spaces and relate them to topological concepts such as hyperconvexity. This also leads to a new interpretation of TDA.
AbstractSolving multiscale PDEs is difficult in high dimensional and/or convection dominant cases. The Lagrangian computation, interacting particle method, is shown to outperform solving PDEs directly (Eulerian). Examples include computing effective diffusivities, KPP front speed, and asymptotic transport properties in topological insulators. However the particle simulation takes long before co...