清华主页 EN
导航菜单

Modulated Free Energy and Mean Field Limit

来源: 09-29

时间:14:00-15:30, 9月30日(星期五), Sep. 30th (Fri.) 2022

地点:近春园西楼三层报告厅, Lecture hall, 3rd floor of Jin Chun Yuan West Building

组织者:应用与计算数学团队

主讲人:Zhenfu Wang (王振富), 北京大学北京国际数学研究中心 Beijing International Center for Mathematical Research, Peking University

Abstract: 

We prove the mean field limit and quantitative estimates for many-particle systems with singular attractive interactions between particles. As an important example, a full rigorous derivation (with quantitative estimates) of the Patlak-Keller-Segel model in optimal subcritical regimes is obtained for the first time. To give an answer to this longstanding problem, we take advantage of a new modulated free energy and we prove some precise large deviation estimates encoding the competition between diffusion and attraction. This modulated free energy approach can also treat the systems with a wide range of repulsive kernels, including the vanishing viscosity case. Based on joint works with D. Bresch and P.-E. Jabin.


个人简介:

王振富,2012年本科毕业于南京大学,2017年获美国马里兰大学数学博士学位,博士导师为 Pierre-Emmanuel Jabin。2017年7月到2020年6月在美国宾夕法尼亚大学从事博士后研究工作。2020年10月入职北京大学,现任北京国际数学研究中心助理教授、研究员。主要研究领域为交互粒子系统的平均场极限和动理学方程的分析。

返回顶部
相关文章