An upper bound for polynomial log-volume growth of automorphisms of zero entropyAbstractLet f by an automorphism of zero entropy of a smooth projective variety X. The polynomial log-volume growth plov(f) of f is a natural analog of Gromov's log-volume growth of automorphisms (of positive entropy), formally introduced by Cantat and Paris-Romaskevich for slow dynamics in 2020. A surprising fact n...
Zoom link: https://zoom.us/j/4552601552?pwd=cWxBUjlIN3dxclgrZWFEOC9jcmlwUT09 AbstractIn 1990 Tian-Yau proved that if Y is a Fano manifold and D is a smooth anti-canonical divisor, the complement X=Y\D admits a complete Calabi-Yau metric. A long standing problem has been to understand the existence of Calabi-Yau metrics when D is singular. I will discuss the resolution of this problem when D=D_1...