清华主页 EN
导航菜单

eigenvalue problems in data science

来源: 11-24

时间:Thur., 14:00-15:00, Nov. 24th, 2022

地点:Online Tencent ID:431642438

组织者:应用与计算数学团队

主讲人:Leihong Zhang (Soochow University)

Abstract

Some recent applications of multivariate statistical analysis in data science need to optimize certain trace-related objective functions over the orthogonal constraints. In this talk, we shall first present some recent applications in data science and show that solving the optimization problems can be converted to eigenvector-dependent eigenvalue problems (NEPv) for which the self-consistent filed (SCF) iteration can be effectively applied. We then discuss recent developments of the general SCF on the local convergence rate and the level-shifted technique.


Speaker

张雷洪于2008年博士毕业于香港浸会大学,现为苏州大学数学科学学院教授。从事最优化理论与计算、数值线性代数、模式识别、数据挖掘等领域的研究。主持多项国家自科项目,参与国家自然科学基金重大研究计划。在《Math Program》、《Math. Comput.》、《Numer. Math.》、《IEEE TPAMI》以及SIAM期刊系列等发表六十多篇学术论文。曾获第四届“应用数值代数奖’’、2018和2019年两届世界华人数学家联盟最佳论文奖(若琳奖),及2019年上海市自然科学三等奖(第一完成人) 等。

返回顶部
相关文章
  • Trace optimization and eigenvector-dependent nonlinear eigenvalue problems in data science

    AbstractSome recent applications of multivariate statistical analysis in data science need to optimize certain trace-related objective functions over the orthogonal constraints. In this talk, we shall first present some recent applications in data science and show that solving the optimization problems can be converted to eigenvector-dependent eigenvalue problems (NEPv) for which the self-consi...

  • Topological Approaches for Data Science I

    Record: YesLevel: GraduateLanguage: ChinesePrerequisiteAlgebraic TopologyAbstractTopological data analysis is a new-born research area that explores topological approaches in data science, where persistent homology has been proved as an effective mathematical tool in data analytics with various successful applications. This course will discuss the mathematical foundations of (higher) topologica...