Description: This course introduces how to develop deep generative models (DGMs) by integrating probabilistic graphical models and deep learning to generate realistic data including images, texts, graphs, etc. Course contents include 1) basics of probabilistic graphical models, including Bayesian network and Markov random field; 2) posterior inference methods, including message passing, variat...
AbstractSolving multiscale PDEs is difficult in high dimensional and/or convection dominant cases. The Lagrangian computation, interacting particle method, is shown to outperform solving PDEs directly (Eulerian). Examples include computing effective diffusivities, KPP front speed, and asymptotic transport properties in topological insulators. However the particle simulation takes long before co...