清华主页 EN
导航菜单

High-order bound-preserving numerical methods for chemically reacting flows

来源: 12-15

时间:Thur.,10:00-11:00am,Dec.15,2022

地点:Zoom ID: 271 534 5558 ;PW: YMSC

组织者: 应用与计算数学团队

主讲人:Yang Yang Michigan Technological University

Abstract

Chemically reacting flows have many applications in combustion. There are several difficulties in constructing high-order numerical methods: (1) Due to the rapid reaction rate, the system may contain stiff source terms. (2) The transition points near the shocks may trigger the stiff source leading to spurious shock speed. (3) Physically, the density, internal energy are positive, and the mass fractions are between 0 and 1. In this talk, we discuss recent advances of high-order discontinuous Galerkin and finite difference methods for chemically reacting flows. We introduce the bound-preserving techniques for spatial derivatives. Several effective time integrations are developed. Finally, to suppress oscillations, we discuss the oscillation-free algorithm.


Speaker

In 2005, Professor Yang Yang joined the Department of Modern Mechanics at University of Science and Technology of China. One year later, he transferred to the Math Department and studied pure math, especially analysis. After receiving his Bachelor's degree of Mathematics in 2009, he started his graduate studies at Brown University and worked with Professor Chi-Wang Shu on Numerical Analysis.

His work mainly focused on high order numerical methods for time-dependent problems. It includes three parts: Approximations to delta-functions, Superconvergence of discontinuous Galerkin methods and Numerical cosmology. After obtaining his Ph.D. degree in 2013, he joined the Department of Mathematical Sciences at Michigan Technological University. In 2017, he was promoted to associate professor with tenure. In 2021, he was promoted to professor with tenure.

返回顶部
相关文章
  • Conservative, Positivity Preserving and Energy Dissipative Numerical Methods for the Poisson-Nernst-Planck Equations

    AbstractWe design and analyze some numerical methods for solving the Poisson-Nernst-Planck (PNP) equations. The numerical schemes, including finite difference method and discontinuous Galerkin method, respect three desired properties that are possessed by analytical solutions: I) conservation, II) positivity of solution, and III) free-energy dissipation. Advantages of different types of methods...

  • A Type of Robust Bound-preserving MUSCL-Hancock Schemes

    AbstractThe MUSCL-Hancock upwind scheme, as a variation of the MUSCL scheme, only do the initial data reconstruction once in every cell and solve the Riemann problem once at every cell interface in one time step and is widely used to solve hyperbolic conservation laws. The MMP property of the scheme with CFL number 1/2 for scalar equation is proved in [A. Suresh. SIAM Journal on Scientific Comp...