AbstractThe study of arithmetic groups has played a fundamental role in the development of number theory, geometry and representation theory. Automorphic forms have been one of the most important guiding tools to study them. The study of Eisenstein cohomology was initiated by Harder, and he discovered that Eisenstein cohomology is fundamentally related to several important topics in number theo...
PrerequisiteBasic algebraic topology and number theoryAbstractI will talk about the basics of cohomology of arithmetic groups focusing on Harder's new book. I will start from simplest cases of the group SL_2 over Z (which covers the chapter 2 and 3 of the book of Harder) and try to be as concrete as possible. The goal is to under these cohomology groups from the point of view of geometry and ar...