清华主页 EN
导航菜单

Fontaine's conjecture for log p-divisible groups

来源: 04-17

时间:Mon., 10:00-11:00am, Apr. 17, 2023

地点:Jin Chun Yuan West Building, 3rd floor Lecture Hall (近春园西楼三楼报告厅) Zoom ID: 4552601552;PW: YMSC

组织者:Hansheng Diao, Yueke Hu, Emmanuel Lecouturier, Cezar Lupu

主讲人:Shanwen Wang 王善文 Renmin University

Abstract 

Let K be a finite extension of Q_p with ring of integer O_K. It is a very classical result due to Fontaine, Laffaille, Breuil and Kisin that the a galois representation of G_K is cristalline with Hodge-Tate weights in [0,1 ] if and only if it arises from a p-divisible group over O_K. In this talk, we will explain its generalization to log p-divisible groups. More precisely, we show that a galois representation of G_K is semi-stable with Hodge-Tate weights in [0,1 ] if and only if it arises from a log p-divisible group. Joint work with A. Bertapelle and H. Zhao.


About the speaker 

王善文,中国人民大学副教授,研究方向为数论与算术代数几何,曾获国家高层次青年人才计划支持。2005年本科毕业于清华大学;2010年获法国巴黎综合理工大学数学博士,师从数论名家Pierre Colmez;2015年至2019年任上海数学中心青年研究员,2019年入职中国人民大学。

返回顶部
相关文章
  • The K(pi,1)-conjecture for Artin groups via combinatorial non-positive curvature

    Abstract:The K(pi,1)-conjecture for reflection arrangement complements, due to Arnold, Brieskorn, Pham, and Thom, predicts that certain complexified hyperplane complements associated to infinite reflection groups are Eilenberg MacLane spaces. We establish a close connection between a very simple property in metric graph theory about 4-cycles and the K(pi,1)-conjecture, via elements of non-posi...

  • Tropical Hodge conjecture for Abelian varieties

    AbstractThe classical Hodge conjecture states that for a smooth projective variety any rational (p,p)-class can be represented by an algebraic cycle. The first non-trivial case for abelian varietie