Description: Matched sampling, where the researcher first finds for each exposed unit (e.g., a smoker) a non-exposed unit (e.g., a never-smoker) who looks exactly like the exposed unit except for the exposure, and then compares outcomes (e.g., lung cancer rates) for the matched samples of units, is an intuitive method for inferring the causal effects of exposure versus non-exposure on the colle...
AbstractSampling a target distribution with an unknown normalization constant is a fundamental problem in computational science and engineering. Often, dynamical systems of probability densities are constructed to address this task, including MCMC and sequential Monte Carlo. Recently, gradient flows in the space of probability measures have been increasingly popular to generate this dynamical s...