IntroductionLet $\Lambda$ be a discrete subset of the real line. We study the properties of the exponential system $\{e^{i\lambda t}_{\lambda\in\Lambda}\}$ as a subset of some Banach space on the real line. The main example is the space $L^2(E)$, where $E$ is a measurable subset of the real line. The classical theory corresponds to the case when $E$ is an interval. It includes the famous Beurli...
Abstract:Holomorphic Floer Theory is the name of our joint project (in fact a program) with Maxim Kontsevich.It is devoted to various aspects of the Floer theory of complex symplectic manifolds.Among applications of our approach there are generalizations of the Riemann-Hilbert correspondence and non-abelian Hodge theory, relation of the Fukaya categories with periodic monopoles,conceptual unde...