清华主页 EN
导航菜单

Construction of maximal unramified p-extensions for given Galois groups

来源: 08-21

时间:August 21(Monday) 10:00-11:00 am

地点:Jingzhai, 105, Tsinghua

主讲人:Prof. Christian Maire Institut FEMTO-ST

Abstract

About a decade ago, Manabu Ozaki (Waseda University) established the following result: given a finite p-group G, there exists a totally imaginary number field K for which the Galois group of its p-Hilbert tower is isomorphic to G. In collaboration with Farshid Hajir (UMASS) and Ravi Ramakrishna (Cornell University), we have revisited and streamlined Ozaki's proof, which allowed us to relax the condition on the signature of K and to control the degree and ramification of K/Q. In this lecture, I will provide the key elements of our proof.


About Christian Maire

“Mes domaines d'expertises sont la théorie des nombres, l'arithmétique, l'algèbre sur les corps de nombres, les pro-p extensions, etc.”

http://members.femto-st.fr/christian-maire


返回顶部
相关文章
  • On Galois representations with large image

    AbstractIn this presentation, we will discuss the images of Galois representations. In particular, we will address the tame version of the Fontaine-Mazur conjecture, as well as the issue of the existence of Galois extensions with open image.About Christian Maire“Mes domaines d'expertises sont la théorie des nombres, l'arithmétique, l'algèbre sur les corps de nombres, les pro-p extensions, etc....

  • $h$-Principle for Maximal Growth Distributions

    DescriptionThe existence and classification problem for maximal growth distributions on smooth manifolds has garnered much interest in the mathematical community in recent years. Prototypical examples of maximal growth distributions are contact structures on $3$-dimensional manifolds and Engel distributions on $4$-dimensional manifolds. The existence and classification of maximal growth distrib...