清华主页 EN
导航菜单

On super-rigidity of Gromov's random monster group

来源: 09-19

时间:Tues., 21:00-22:00, Sept. 19, 2023

地点:Zoom ID: 271 534 5558; PW: YMSC

组织者:Akito Futaki, 邓嘉龙

主讲人:Kajal Das (Indian Statistical Institute)

In my talk, I will speak on the super-rigidity of Gromov's random monster group. It is a finitely generated random group $\Gamma_\alpha$ ( $\alpha$ is in a probability space $\mathcal{A}$) constructed using an expander graph by M. Gromov in 2000. It provides a counterexample to the Baum-Connes conjecture for groups with coefficients in commutative $C^*$-algebra. It is already known that it has global fixed point property for isometric affine action on $L^p$ spaces for $1< p<\infty$ (in particular, Property (T) ) for a.e. $\alpha$ due to Gromov and Naor-Silberman. It is also hyperbolically rigid, i.e., any isometric action of the group on a Gromov-hyperbolic space is elementary for a.e. $\alpha$ (due to Gruber-Sisto-Tessera). In this talk, I will discuss the following type of super-rigidity problem (motivated by Margulis super-rigidity theorem): for which countable group $G$, any collection of homomorphisms $\phi_\alpha:\Gamma_\alpha\rightarrow G$ have a finite image for a.e. $\alpha$? This question was first addressed for linear groups by Naor-Silberman. The super-rigidity follows immediately from the literature for groups with a-$L^p$-menablity and K-amenable groups. In this talk, we will show that $\Gamma_\alpha$ has super-rigidity with respect to the following groups $G$: mapping class group $MCG(S_{g,p})$, braid group $B_n$, automorphism group of a free group $Aut(F_n)$, outer automorphism group of a free group $Out(F_N)$ . We will also show a stability result of the class of groups $G$.

返回顶部
相关文章
  • quantum group and representation theory

    Abstract:I will give a brief introduction to quantum groups and their representation theory with the emphasis on applications to integrable systems. If time permits, I will talk about positive representations and their Clebsch-Gordan coefficients and Racah-Wigner coefficients in the case of U_q(sl_2)

  • Category O for a hybrid quantum group

    AbstractIn this talk we introduce a hybrid quantum group at root of unity. We consider its category O and discuss some basic properties including linkage principle and BGG reciprocity. Then we show that there is an isomorphism between the center of a block (of arbitrary singular type) of the category O with the cohomology ring of the partial affine flag variety (of the corresponding parahoric t...